![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > General
Recently, we proposed a completely novel and efficient way to design differential beamforming algorithms for linear microphone arrays. Thanks to this very flexible approach, any order of differential arrays can be designed. Moreover, they can be made robust against white noise amplification, which is the main inconvenience in these types of arrays. The other well-known problem with linear arrays is that electronic steering is not really feasible. In this book, we extend all these fundamental ideas to circular microphone arrays and show that we can design small and compact differential arrays of any order that can be electronically steered in many different directions and offer a good degree of control of the white noise amplification problem, high directional gain, and frequency-independent response. We also present a number of practical examples, demonstrating that differential beamforming with circular microphone arrays is likely one of the best candidates for applications involving speech enhancement (i.e., noise reduction and dereverberation). Nearly all of the material presented is new and will be of great interest to engineers, students, and researchers working with microphone arrays and their applications in all types of telecommunications, security and surveillance contexts.
This book reports on the latest research and developments in the field of brain-computer interfaces (BCIs). It introduces ten outstanding and innovative BCI projects, nominated as finalists for the BCI award 2012 by a jury of established researchers and discusses how each of the nominated projects reflects general worldwide trends in BCI development. At the core of the book, nine of these ten projects are described in detailed individual chapters. These include a focused introduction to each project, an easy to grasp description of the methods and a timely report on the most recent developments achieved since the submission to the award. Hence, this book provides a cutting-edge overview of the newest BCI research trends, from leading experts, in an easy to read format supported by explanatory pictures, graphs and figures.
Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not. In order to avoid the assumptions needed for convergence analysis in the Fourier domain, the authors use a general method of convergence analysis used for alternate minimization based on three point and four point properties of the points in the image space. The authors prove that all points in the image space satisfy the three point property and also derive the conditions under which four point property is satisfied. This provides the conditions under which alternate minimization for blind deconvolution converges with a quadratic prior. Since the convergence properties depend on the chosen priors, one should design priors that avoid trivial solutions. Hence, a sparsity based solution is also provided for blind deconvolution, by using image priors having a cost that increases with the amount of blur, which is another way to prevent trivial solutions in joint estimation. This book will be a highly useful resource to the researchers and academicians in the specific area of blind deconvolution.
This book is an accessible guide to adaptive signal processing methods that equips the reader with advanced theoretical and practical tools for the study and development of circuit structures and provides robust algorithms relevant to a wide variety of application scenarios. Examples include multimodal and multimedia communications, the biological and biomedical fields, economic models, environmental sciences, acoustics, telecommunications, remote sensing, monitoring and in general, the modeling and prediction of complex physical phenomena. The reader will learn not only how to design and implement the algorithms but also how to evaluate their performance for specific applications utilizing the tools provided. While using a simple mathematical language, the employed approach is very rigorous. The text will be of value both for research purposes and for courses of study.
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
The book addresses issues towards the design and development of Wireless Sensor Network based Smart Home and fusion of Real-Time Data for Wellness Determination of an elderly person living alone in a Smart Home. The fundamentals of selection of sensor, fusion of sensor data, system design, modelling, characterizations, experimental investigations and analyses have been covered. This book will be extremely useful for the engineers and researchers especially higher undergraduate, postgraduate students as well as practitioners working on the development of Wireless Sensor Networks, Internet of Things and Data Mining.
This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.
The work presented in this book focuses on modeling audiovisual quality as perceived by the users of IP-based solutions for video communication like videotelephony. It also extends the current framework for the parametric prediction of audiovisual call quality. The book addresses several aspects related to the quality perception of entire video calls, namely, the quality estimation of the single audio and video modalities in an interactive context, the audiovisual quality integration of these modalities and the temporal pooling of short sample-based quality scores to account for the perceptual quality impact of time-varying degradations.
The book reports on the author’s original work to address the use of today’s state-of-the-art smartphones for human physical activity recognition. By exploiting the sensing, computing and communication capabilities currently available in these devices, the author developed a novel smartphone-based activity-recognition system, which takes into consideration all aspects of online human activity recognition, from experimental data collection, to machine learning algorithms and hardware implementation. The book also discusses and describes solutions to some of the challenges that arose during the development of this approach, such as real-time operation, high accuracy, low battery consumption and unobtrusiveness. It clearly shows that it is possible to perform real-time recognition of activities with high accuracy using current smartphone technologies. As well as a detailed description of the methods, this book also provides readers with a comprehensive review of the fundamental concepts in human activity recognition. It also gives an accurate analysis of the most influential works in the field and discusses them in detail. This thesis was supervised by both the Universitat Politècnica de Catalunya (primary institution) and University of Genoa (secondary institution) as part of the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments.
This book presents the selected results of the XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE) which was held in Rzeszów and Czarna, Poland on September 27-30, 2013. The main aim of the Conference was to provide academia and industry to discuss and present the latest technological advantages and research results and to integrate the new interdisciplinary scientific circle in the field of electrical engineering, electronics and mechatronics. The Conference was organized by the Rzeszów Division of Polish Association of Theoretical and Applied Electrical Engineering (PTETiS) in cooperation with Rzeszów University of Technology, the Faculty of Electrical and Computer Engineering and Rzeszów University, the Faculty of Mathematics and Natural Sciences.
The book focuses on an image processing technique known as binarization. It provides a comprehensive survey over existing binarization techniques for both document and graphic images. A number of evaluation techniques have been presented for quantitative comparison of different binarization methods. The book provides results obtained comparing a number of standard and widely used binarization algorithms using some standard evaluation metrics. The comparative results presented in tables and charts facilitates understanding the process. In addition to this, the book presents techniques for preparing a reference image which is very much important for quantitative evaluation of the binarization techniques. The results are produced taking image samples from standard image databases.
Popular music plays a substantial role in most people’s life. The demand and financial revenue of Rock and Pop concerts is large and still increasing with the decreased revenue on recorded music. Based on the first ever scientific investigations on recommendable acoustics for amplified music conducted by the author, this book sets forward precise guidelines for acoustical engineers to optimize the acoustics in existing or future halls for amplified music. Gives precise guidelines on how to design the acoustics in venues that present amplified music Debates essential construction details, including placement of sound system and use of possible building materials, in the architectural design of new venues or the renovation of old ones Portrays 75 well-known European Rock & Pop venues, their architecture and acoustic properties. 20 venues were rated for their acoustics by music professionals leading to an easy-to-use assessment methodology ”Acoustics are important within pop and rock venues to ensure a great experience for audiences and performers. This book fills an important gap of knowledge on the acoustics of venues. It will be of value to sound engineers as well as building owners and operators and building design professionals”. Rob Harris, Arup Acoustics ”With this book, many future amplified music concerts will sound better, for the joy of audiences and musicians alike. This enormous work demonstrates a rare degree of passion and insight, from the hand of the key researcher in the field”. Dr. Per V. Brüel
During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro and nano mechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. It is aimed at scientists, engineers and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nano science, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.
This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-function form. This common form enables the use of the growth transformation (or extended Baum-Welch) optimization framework in discriminative learning of model parameters. In addition to all the necessary introduction of the background and tutorial material on the subject, we also included technical details on the derivation of the parameter optimization formulas for exponential-family distributions, discrete hidden Markov models (HMMs), and continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative learning can lead to superior speech recognition performance over conventional parameter learning. Details on major algorithmic implementation issues with practical significance are provided to enable the practitioners to directly reproduce the theory in the earlier part of the book into engineering practice. Table of Contents: Introduction and Background / Statistical Speech Recognition: A Tutorial / Discriminative Learning: A Unified Objective Function / Discriminative Learning Algorithm for Exponential-Family Distributions / Discriminative Learning Algorithm for Hidden Markov Model / Practical Implementation of Discriminative Learning / Selected Experimental Results / Epilogue / Major Symbols Used in the Book and Their Descriptions / Mathematical Notation / Bibliography
The book reports on the 11th International Workshop on Railway Noise, held on 9 – 13 September, 2013, in Uddevalla, Sweden. The event, which was jointly organized by the Competence Centre Chalmers Railway Mechanics (CHARMEC) and the Departments of Applied Mechanics and Applied Acoustics at Chalmers University of Technology in Gothenburg, Sweden, covered a broad range of topics in the field of railway noise and vibration, including: prospects, legal regulations and perceptions; wheel and rail noise; prediction, measurements and monitoring; ground-borne vibration; squeal noise and structure-borne noise; and aerodynamic noise generated by high-speed trains. Further topics included: resilient track forms; grinding, corrugation and roughness; and interior noise and sound barriers. This book, which consists of a collection of peer-reviewed papers originally submitted to the workshop, not only provides readers with an overview of the latest developments in the field, but also offers scientists and engineers essential support in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.
This book contains a selection of papers presented at the Second National Conference on Sensors held in Rome 19-21 February 2014. The conference highlighted state-of-the-art results from both theoretical and applied research in the field of sensors and related technologies. This book presents material in an interdisciplinary approach, covering many aspects of the disciplines related to sensors, including physics, chemistry, materials science, biology and applications.
The Wireless Identification and Sensing Platform (WISP) is the first of a new class of RF-powered sensing and computing systems. Rather than being powered by batteries, these sensor systems are powered by radio waves that are either deliberately broadcast or ambient. Enabled by ongoing exponential improvements in the energy efficiency of microelectronics, RF-powered sensing and computing is rapidly moving along a trajectory from impossible (in the recent past), to feasible (today), toward practical and commonplace (in the near future). This book is a collection of key papers on RF-powered sensing and computing systems including the WISP. Several of the papers grew out of the WISP Challenge, a program in which Intel Corporation donated WISPs to academic applicants who proposed compelling WISP-based projects. The book also includes papers presented at the first WISP Summit, a workshop held in Berkeley, CA in association with the ACM Sensys conference, as well as other relevant papers. The book provides a window into the fascinating new world of wirelessly powered sensing and computing.
E.F.F. Chladni's experiments and observations with sound and vibrations profoundly influenced the development of the field of Acoustics. The famous Chladni diagrams along with other observations are contained in Die Akustik, published in German in 1802 and Traite d'Acoustique, a greatly expanded version, published in French in 1809. This is the first comprehensive translation of the expanded French version of Traite d'Acoustique, using the 1802 German publication for reference and clarification. The translation was undertaken by Robert T. Beyer, PhD (1920-2008), noted acoustician, Professor of Physics at Brown University, and Gold Medal recipient of the Acoustical Society of America. Along with many other projects completed over the course of his career, Dr. Beyer translated Von Neumann's seminal work, Mathematical Foundations of Quantum Mechanics from the original German, spent 30 years translating Russian physics treatises and journals, served as editor of the English translation of the Soviet Journal of Experimental and Theoretical Physics, and also authored Sounds of our Times: Two Hundred Years of Acoustics.
Learn to create plated desserts like a master, with recipes from the World and National Pastry Team Championships Considered the Olympics of the pastry arts, the World and National Pastry Championships were founded by Michael Schneider in 1999. Since then, it has grown into the United States' most prestigious and popular pastry competition, aired annually on TLC. Now, in "Plating for Gold," pastry chef Tish Boyle presents the most spectacular dessert recipes from the first decade of the competition and shows how you can recreate the same award-winning desserts in your own kitchen. "Plating for Gold" includes 50 recipes for absolutely spectacular desserts created by expert pastry chefs like Ewald Notter, Jacquy Pfeiffer, and Sebastien Cannone, all presented in easy-to-follow, step-by-step instructions. You'll find whimsical and delicious one-of-a-kind recipes like Strawberry Soup, Vanilla Panna Cotta Napoleon, and Almond Tartlet; Hot Chocolate Souffle, Ginger Mousse, and Tropical Parfait; and Yin-Yang Flourless Chocolate Cake, as well as insight and advice from top pastry chefs on perfect plating.Includes advice on essential equipment, stocking your pastry kitchen, and perfect flavor pairings to help you create your own original recipesFeatures enticing full-color photographs of finished desserts, as well as hand-drawn sketches to illustrate plating techniques and provide endless inspirationOffers a behind-the-scenes look at the world of pastry competition, with candid photos and insider advice from some of today's best pastry chefs Whether you aspire to compete with the best at the Pastry Team Championships or simply want to impress guests at your next big dinner party, "Plating for Gold" is the gold standard in dessert cookbooks.
This book provides the reader with the knowledge necessary for comprehension of the field of Intelligent Audio Analysis. It firstly introduces standard methods and discusses the typical Intelligent Audio Analysis chain going from audio data to audio features to audio recognition. Further, an introduction to audio source separation, and enhancement and robustness are given. After the introductory parts, the book shows several applications for the three types of audio: speech, music, and general sound. Each task is shortly introduced, followed by a description of the specific data and methods applied, experiments and results, and a conclusion for this specific task. The books provides benchmark results and standardized test-beds for a broader range of audio analysis tasks. The main focus thereby lies on the parallel advancement of realism in audio analysis, as too often today's results are overly optimistic owing to idealized testing conditions, and it serves to stimulate synergies arising from transfer of methods and leads to a holistic audio analysis.
This book provides an in-depth study of the foundations of statistical energy analysis, with a focus on examining the statistical theory of sound and vibration. In the modal approach, an introduction to random vibration with application to complex systems having a large number of modes is provided. For the wave approach, the phenomena of propagation, group speed, and energy transport are extensively discussed. Particular emphasis is given to the emergence of the diffuse field, the central concept of the theory. All important notions are gradually introduced--making the text self-contained--to lead the reader to the ultimate result of `coupling power proportionality' and the concept of `vibrational temperature'. Further key topics include the analogy between thermodynamics and sound vibration. Applications are concerned with random vibration in mass-spring resonators, strings, beams, rods, and plates but also reverberation in room acoustics, radiation of sound, and sound response.
This book offers an overview of models, measurements, calculations and examples connecting musical acoustics and music psychology. Indeed, many mathematical formulations that explain musical acoustics can also be used to help predict human auditory perception. |
You may like...
Generative Adversarial Networks and Deep…
Roshani Raut, Pranav D Pathak, …
Hardcover
R4,352
Discovery Miles 43 520
Chi-Squared Data Analysis and Model…
Carey Witkov, Keith Zengel
Hardcover
R1,556
Discovery Miles 15 560
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,699
Discovery Miles 26 990
Biometry - Technology, Trends and…
Ricardo A. Ramirez-Mendoza, Jorge de J. Lozoya-Santos, …
Hardcover
R4,214
Discovery Miles 42 140
Applications of Mathematical Modeling…
Madhu Jain, Dinesh K. Sharma, …
Hardcover
R4,642
Discovery Miles 46 420
High Performance Computing in Science…
Wolfgang E. Nagel, Dietmar H. Kroener, …
Hardcover
R5,236
Discovery Miles 52 360
|