![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
Advanced composite materials have been a major research focus for the past forty years. As a reinforcement for conventional materials including glass, ceramics and polymers, carbon has proved to be the most successful. Carbon gives these materials flexibility so that they may be produced in bulk form with a wide variety of properties. Whereas carbon/carbon composites are the most effective materials in extreme temperature conditions. Application ranges from brakes to missile nose cones. Carbon Reinforcements and Carbon/Carbon Composites gives the present state on this subject in comprehensive form, as well as projections for other "High Tech" materials and their application.
CONJUGATED POLYMERS: THE IMTERPLAY BETWEEN SYNTHESIS, 1 STRUCTURE, AND PROPERTIES C. B. GORMAN and R. H. GRUBBS 1. Introduction 2 2. Structural Features of Conjuqated. Polyaers 3 3. Polymer Synthesis: Basic Methods 4 3. 1 Step-Growth Polymerization 5 3. 2 Chain-Growth Polymerization 6 3. 3 Rinq-Openinq Polymerization 8 4. Direct Synthetic Methods 8 4. 1 Electrochemical Synthesis 9 4. 2 Synthesis by Step-Growth Polymerization 11 4. 2. 1 Polyaniline (PAN) 11 4. 2. 2 Poly(Phenylene Sulfide) 12 4. 2. 3 Poly thiophene and its Derivatives 13 4. 2. 4 Other 5-membered Heterocyclic 16 Derivatives 4. 2. 5 Polyparaphenylene (PPP) 17 4. 2. 6 Polysilanes 18 4. 2. 7 Polymers of Phthalocyanines 19 4. 2. 8 Other Conjugated Metal Coordination 20 Polymers 4. 2. 9 Ladder Polymers 21 4. 3 The Unusual Topochemical Polymerization to 23 form Polydiacetylenes 4. 4 Chain-Growth Polymerizations 24 4. 4. 1 Polyacetylene via Ziegler-Natta 24 Polymerization 4. 4. 2 Ring-Opening Metathesis Polymerization 26 Routes to Polyacetylenes 5. Polymers fro. precursors 27 5. 1 Polyparaphenylene (PPP) 27 5. 2 Poly(Phenylene Vinylene) (PPV) and Other 28 Vinylene Polymers 5. 3 Precursors to Polyacetylene 29 6. Extentions of these Methods in the Synthesis of 31 *saall-Bandqap* Pplymers 7. Conjuqated. Polymer Matrices 33 8. Conclusions and Caveats 35 Acknowled. qements 36 References 36 vi TABLE OF CONTENTS PROPERTIES OF HIGHLY CONDUCTIHG POLYACETYLEHE 49 Th. SCHIMMEL, D. GLASER, M. SCHWOERER AND H. NAARMANN 1. Introduction 50 2. SBIlpie Synthesis, lIorphology and Properties 52 2.
This volume is based on the proceedings of the NATO-sponsored Advanced Studies Institute (ASn on The New Superconducting Electronics (held 9-20 August 1992 in Waterville Valley, New Hampshire USA). The contents herein are intended to provide an update to an earlier volume on the same subject (based on a NATO ASI held in 1988). Four years seems a relatively short time interval, and our title itself, featuring The New Superconducting Electronics, may appear somewhat pretentious. Nevertheless, we feel strongly that the ASI fostered a timely reexamination of the technical progress and application potential of this rapid-paced field. There are, indeed, many new avenues for technological innovation which were not envisioned or considered possible four years ago. The greatest advances by far have occurred with regard to oxide superconductors, the so-called high transition-temperature superconductors, known in short as HTS. These advances are mainly in the ability to fabricate both (1) high-quality, relatively large-area films for microwave filters and (2) multilayer device structures, principally superconducting-normal-superconducting (SNS) Josephson junctions, for superconducting-quantum-interference-device (SQUID) magnetometers. Additionally, we have seen the invention and development of the flux-flow transistor, a planar three-terminal device. During the earlier ASI only the very first HTS films with adequate critical-current density had just been fabricated, and these were of limited area and had high resistance for microwave current."
Five questions dominated the ARW on Physics and Materials Science of High Temperature Superconductors, of which this book forms the permanent record. Briefly, these are: (i) How close are we to a unified theory? The consensus is that we are not. (ii) Flux pinning: can it be achieved in bulk materials? Still an open question. The following three questions are related. (iii) Can grain boundary contributions be brought under control? (iv) What is the real requirement for purity and general chemistry control? (v)What is the practical outlook for bulk products - tapes and wires? One of the conclusions is that the geometry and dimensions in thin films are the key parameters that facilitate the realization of high current densities and, consequently, their commercial application. On the other hand, the very large number of poorly understood microstructural, chemical and mechanical variables involved in the preparation of bulk materials are currently prohibiting large scale commercialization of wires and tapes.
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
In the last ten years, the physics and technology of low dimensional structures has experienced a tremendous development. Quantum structures with vertical and lateral confinements are now routinely fabricated with feature sizes below 100 run. While quantization of the electron states in mesoscopic systems has been the subject of intense investigation, the effect of confinement on lattice vibrations and its influence on the electron-phonon interaction and energy dissipation in nanostructures received atten tion only recently. This NATO Advanced Research Workshop on Phonons in Sem iconductor Nanostructures was a forum for discussion on the latest developments in the physics of phonons and their impact on the electronic properties of low-dimensional structures. Our goal was to bring together specialists in lattice dynamics and nanos tructure physics to assess the increasing importance of phonon effects on the physical properties of one-(lD) and zero-dimensional (OD) structures. The Workshop addressed various issues related to phonon physics in III-V, II-VI and IV semiconductor nanostructures. The following topics were successively covered: Models for confined phonons in semiconductor nanostructures, latest experimental observations of confined phonons and electron-phonon interaction in two-dimensional systems, elementary excitations in nanostructures, phonons and optical processes in reduced dimensionality systems, phonon limited transport phenomena, hot electron effects in quasi - ID structures, carrier relaxation and phonon bottleneck in quantum dots."
-On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing By C. D. Han -Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers By J. K. Kim, C. D. Han -New Class Materials of Organic-Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Microand Nano-Structure Toward Photonics By H. Oikawa, T. Onodera, A. Masuhara, H. Kasai, H. Nakanishi -Poly(substituted Methylene) Synthesis: Construction of C-C Main Chain from One Carbon Unit By E. Ihara
The FIRST MEXICAN MEETING ON MATHEMATICAL AND EXPERI MENTAL PHYSICS was held at EL COLEGIO N ACIONAL in Mexico Cit y, Mexico, from September 10 to 14, 2001. This event consisted of the LEOPOLDO GARciA-COLiN SCHERER Medal Lecture, delivered by Prof. Nicholas G. van Kampen, a series of plenary talks by Leopoldo Garcia-Colin, Giinter Nimtz, Luis F. Rodriguez, Ruoon Barrera, and Donald Saari, and of three parallel symposia, namely, Cosmology and Gravitation, Statistical Physics and Beyond, and Hydrodynamics and Dynamical Systems. The response from the Physics community was enthusiastic, with over 200 participants and around 80 speakers, from allover the world: USA, Canada, Mexico, Germany, France, Holland, United Kingdom, Switzerland, Spain, and Hungary. The main aim of the conference is to provide a scenario to Mexican researchers on the topics of Mathematical and Experimental Physics in order to keep them in contact with work going on in other parts of the world and at the same time to motivate and support the young and mid career researchers from our country. To achieve this goal, we decided to the most distinguished experts in the subjects of the invite as lecturers conference and to give the opportunity to young scientist to communi cate the results of their work. The plan is to celebrate this international endeavor every three years.
When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the debate of critical issues in this still developing field. In this matter, I have been assisted greatly by the excellent series of articles provided by the different authors, who are widely recognized as some of the leaders in this vital area of research.
The study of liquids covers a wide range of scientific disciplines, primarily in physics and chemistry. As a result of this disparate activity the links between new developments in remote fields are seldom co-ordinated into a single conference. The objective of the present meeting was to gather together people with different forms of expertise. Previous ASI meetings on the liquid state have been held over an extended period and have occurred on a three-yearly basis. The first meeting in this series was on 'Structure and Dynamics of Liquids' in 1980 and was held on the island of Corsica. The next meeting on 'Molecular liquids: Dynamics and Interactions' was held in Florence in 1983 and was followed by 'Aqueous Solutions' at the Institut d'Etudes Scientifiques de Cargese in 1986. It therefore seemed a natural choice to select Cargese for the next meeting in 1989 and to choose a topic which emphasised a particular area of liquid state studies. Due to our own involvement in collaborative research we considered that 'Hydrogen-bonded liquids' would be an appropriate topic. One of its attractions, was that there was much new material coming from widely disparate investigations and it would be a convenient time to draw together the different strands. The particular interest in water was clearly central to this topic but it was thought desirable to set this development in the wider context of other systems in which hydrogen-bonding plays a significant role.
The NATO Advanced Research Workshop on "Nanomagnetic Devices" was held in Miraflores de la Sierra, Madrid, Spain, from 14 to 19 September 1992. This book contains 21 invited articles related to suggestive and relevant aspects of Magnetism. The NATO Advanced Research Workshop was Co-directed by R.C. O'Handley, B. Heinrich and A. Hernando. The organisers as well as the participants are gratefully acknowledged to the NATO Science Committee. I also wish to thank the publishers for their advice and help in organizing the book. xi DESIDERATA OF STORAGE DEVICES C.E. YEACK-SCRANTON IBM Corporation, E02/005 5600 Cottle Road San Jose, CA 95139 USA ABSTRACT. Typical requirements on cost, capacity, and performance of today's magnetic storage devices and industry trends in these attributes are given. Scaling components, devices, and materials is shown to be a key factor in further improvement, Challenges to continued scaling are reviewed, particularly as they relate to magnetic nano-structures, materials, and characterization techniques.
No-one who took part in the NATO Advanced Studies Institute from which this book emerges will have forgotten the experience. True, the necessary conditions for a very successful workshop were satisfied: a field of physics bursting with new power and new puzzles, a matchless team of lecturers, an international gathering of students many of whom had themselves contributed at the forefront of their subject, an admirable overlap of experiment and theory, a good mix of experimenters and theorists, an enviable environment. But who could have foreseen the way the workshop became a focus for future directions, how fresh scientific ideas tumbled out of the discussion periods, how the context of teaching the field produced such fruitfulness of research at the highest level? The organisers did have some specific aims in mind. Perhaps foremost was the desire to compare notes among different areas within the sub field of soft condensed matter physics fast becoming known as "complex fluids." For readers seeking a definition, the prosaic "fluids with bits in" can be passed rapidly over in favour of the elegant discussion of slow variables by Scott Milner in his chapter. The uniting goals of the subject are to model the essential molecular or mesoscopic structure theoretically, and to probe this structure as well as the bulk response of the system experimentally. Our famous examples were: colloids, polymers, liquid crystals, block co-polymers and self-assembling surfactant systems.
This graduate-level text presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials. After an overview of the topic, the first part begins with a review of quantum mechanics and solid-state physics, spectroscopy, and crystal field theory; it then treats the quantum theory of radiation, the emission and absorption of radiation, and nonlinear optics; concluding with discussions of lattice vibrations and ion-ion interactions, and their effects on optical properties and laser action. The second part treats specific solid-state laser materials, the prototypical ruby and Nd-YAG systems being treated in greatest detail; and the book concludes with a discussion of novel and non-standard materials. Some knowledge of quantum mechanics and solid-state physics is assumed, but the discussion is as self-contained as possible, making this an excellent reference, as well as useful for independent study.
The behavior of polymer solutions in simple shear flows has been the subject of considerable research in the past. On the other hand, reports on polymers in elongational flow have appeared comparatively recently in the literature. Elongational flow with an inherent low vorticity is known to be more effective in extending polymer chains than simple shear flow and thus is more interesting from the point of view of basic (molecular chain dynamics at high deformation) and applied polymer science (rheology, fiber extrusion, drag reduction, flow through porous media). Undoubtly, one landmark in the field of polymer dynamics in elongational flow was the notion of critical strain-rate for chain extension, initially put forward by A. Peterlin (1966) and later refined into the "coil-stretching" transition by P. G. de Gennes and H. Hinch (1974). In the two decades which followed, significant progress in the understanding of chain conformation in "strong" flow has been accomplished through a combination of advances in instrumentation, computation techniques and theoretical studies. As a result of the multidisciplinary nature of the field, information on polymer chains in "strong" flow is accessible only from reviews and research papers scattered in disparate scientific journals. An important objective of this book is to remedy that situation by providing the reader with up-to-date knowledge in a single volume. The editors therefore invited leading specialists to provide both fundamental and applied information on the multiple facets of chain deformation in elongational flow.
This volume consists of the state-of-the-art reports on new developments in micromechanics and the modeling of nanoscale effects, and is a companion book to the recent Kluwer volume on nanomechanics and mul- scale modeling (it is entitled Trends in Nanoscale Mechanics). The two volumes grew out of a series of discussions held at NASA Langley Research Center (LaRC), lectures and other events shared by many researchers from the national research laboratories and academia. The key events include the 2001 Summer Series of Round-Table Discussions on Nanotechnology at ICASE Institute (NASA LaRC) organized by Drs. V. M. Harik and M. D. Salas and the 2002 NASA LaRC Workshop on Multi-scale Modeling. The goal of these interactions was to foster collaborations between academic researchers and the ICASE Institute (NASA LaRC), a universi- based institute, which has pioneered world-class computational, theoretical and experimental research in the disciplines that are important to NASA. Editors gratefully acknowledge help of Ms. E. Todd (ICASE, NASA LaRC), the ICASE Director M. D. Salas and all reviewers, in particular, Dr. B. Diskin (ICASE/NIA, NASA LaRC), Prof. R. Haftka (University of Florida), Dr. V. M. Harik (ICASE/Swales Aerospace, NASA LaRC), Prof.
The accurate, absolute, and non-destructive measurement of residual stress fields within metallic, ceramic, and composite engineering components has been one of the major problems facing engineers for many years, and so the extension of X-ray methods to the use of neutrons represents a major advance. The technique utilizes the unique penetrating power of the neutron into most engineering materials, combined with the sensitivity of diffraction, to measure the separation of lattice planes within grains of polycrystalline engineering materials, thus providing an internal strain gauge. The strain is then converted to stress using calibrated elastic constants. It was just over ten years ago that the initial neutron diffraction measurements of residual stress were carried out, and during the ensuing decade measurements have commenced at most steady state reactors and pulsed sources around the world. So swift has been the development of the field that, in addition to fundamental scientific studies, commercial measurements have been made on industrial components for several years now. The use of neutrons is ideally suited to the determination of triaxial macrostress tensors, macrostress gradients, and microstresses in composites and multiphase alloys as well as deformed, plastically anisotropic metals and alloys. To date, it has been used to investigate welded and heat-treated industrial components, to characterize composites, to study the response of material under applied loads, to calibrate more portable methods such as ultrasonics, and to verify computer modelling calculations of residual and applied stress.
Nano-science looks at nano-interfaces and nano-junctions, atomic and molecular manipulation of adsorbates, properties of self assembled films and quantum transport in nano-structures. Understanding of these phenomena at the nano-scale is of great importance for both science and technology. Computations for the Nano-Scale is the first book to present the state of the art of the theory of nano-science and some related experiments. It assembles contributions from leading experts who met for a NATO Workshop in Aspet, France, October 12--16, 1992.
Ordered intermetallics constitute a unique class of metallic materials which may be developed as new-generation materials for structural use at high temperatures in hostile environments. At present, there is a worldwide interest in intermetallics, and extensive efforts have been devoted to intermetallic research and development in the U.S., Japan, European countries, and other nations. As a result, significant advances have been made in all areas of intermetallic research. This NATO Advanced Workshop on ordered intermetallics (1) reviews the recent progress, and (2) assesses the future direction of intermetallic research in the areas of electronic structure and phase stability, deformation and fracture, and high-temperature properties. The book is divided into six parts: (1) Electronic Structure and Phase Stability; (2) Deformation and Dislocation Structures; (3) Ductility and Fracture; (4) Kinetic Processes and Creep Behavior; (5) Research Programs and Highlights; and (6) Assessment of Current Research and Recommendation for Future Work. The first four parts review the recent advances in the three focus areas. The fifth part provides highlights of the intermetallic research under major programs and in different institutes and countries. The last part provides a forum for the discussion of research areas for future studies.
Organic solids exhibit a wide range of electrical and related properties. They occur as crystals, glasses, polymers and thin films; they may be insulators, semiconductors, conductors or superconductors; and they may show luminescence, nonlinear optical response, and complex dynamical behaviour. The book provides a broad survey of this area, written by international experts, one third being drawn from Eastern Europe. Electrical, optical, spectroscopic and structural aspects are all treated in a way that gives an excellent introduction to current themes in this highly interdisciplinary and practically important area. The coverage is especially strong in the areas where electrical and optical properties overlap, such as photoconductivity, electroluminescence, electroabsorption, electro-optics and photorefraction.
Spatio-temporal patterns appear almost everywhere in nature, and their description and understanding still raise important and basic questions. However, if one looks back 20 or 30 years, definite progress has been made in the modeling of insta bilities, analysis of the dynamics in their vicinity, pattern formation and stability, quantitative experimental and numerical analysis of patterns, and so on. Universal behaviors of complex systems close to instabilities have been determined, leading to the wide interdisciplinarity of a field that is now referred to as nonlinear science or science of complexity, and in which initial concepts of dissipative structures or synergetics are deeply rooted. In pioneering domains related to hydrodynamics or chemical instabilities, the interactions between experimentalists and theoreticians, sometimes on a daily basis, have been a key to progress. Everyone in the field praises the role played by the interactions and permanent feedbacks between ex perimental, numerical, and analytical studies in the achievements obtained during these years. Many aspects of convective patterns in normal fluids, binary mixtures or liquid crystals are now understood and described in this framework. The generic pres ence of defects in extended systems is now well established and has induced new developments in the physics of laser with large Fresnel numbers. Last but not least, almost 40 years after his celebrated paper, Turing structures have finally been ob tained in real-life chemical reactors, triggering anew intense activity in the field of reaction-diffusion systems."
This introductory text develops the fundamental physics of the behavior of granular materials. It covers the basic properties of flow, friction, and fluidization of uniform granular materials; discusses mixing and segregation of heterogeneous materials (the famous "brazil-nut problem"); and concludes with an introduction to numerical models. The presentation begins with simple experiments and uses their results to build concepts and theorems about materials whose behavior is often quite counter-intuitive; presenting in a unified way the background needed to understand current work in the field. Developed for students at the University of Paris, the text will be suitable for advanced undergraduates and beginning graduates; while also being of interest to researchers and engineers just entering the field.
This book gives a complete account of electron momentum spectroscopy to date. It describes in detail the construction of spectrometers and the acquisition and reduction of cross-section data, explaining the quantum theory of the reaction and giving experimental verification.
The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc. , place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials.
This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.
|
You may like...
Artificial Intelligence for Signal…
Abhinav Sharma, Arpit Jain, …
Hardcover
R4,233
Discovery Miles 42 330
High Efficiency Video Coding (HEVC…
Vivienne Sze, Madhukar Budagavi, …
Hardcover
R4,331
Discovery Miles 43 310
New World, New Roles. - A Documentary…
Sylvia Frey, Marian Morton
Hardcover
R2,568
Discovery Miles 25 680
The Economic Impacts of Population…
Landis Mackellar, Tatiana Ermolieva, …
Hardcover
R3,573
Discovery Miles 35 730
Genetic Programming Theory and Practice
Rick Riolo, Bill Worzel
Hardcover
R4,188
Discovery Miles 41 880
Machine Learning - A Journey To Deep…
Andreas Miroslaus Wichert, Luis Sa-Couto
Hardcover
R4,028
Discovery Miles 40 280
|