![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > General
Viscoelasticandtransportpropertiesofpolymersintheliquid(solution,melt)or liquid-like (rubber) state determine their processing and application to a large extent and are of basic physical interest [1-3]. An understanding of these dynamic properties at a molecular level, therefore, is of great importance. However,thisunderstandingiscomplicatedbythefactsthatdi?erentmotional processes may occur on di?erent length scales and that the dynamics are governed by universal chain properties as well as by the special chemical structure of the monomer units [4,5]. The earliest and simplest approach in this direction starts from Langevin equations with solutions comprising a spectrum of relaxation modes [1-4]. Special features are the incorporation of entropic forces (Rouse model, [6]) which relax uctuations of reduced entropy, and of hydrodynamic interactions (Zimm model, [7]) which couple segmental motions via long-range back ow elds in polymer solutions, and the inclusion of topological constraints or entanglements (reptation or tube model, [8-10]) which are mutually imposed within a dense ensemble of chains. Another approach, neglecting the details of the chemical structure and concentratingontheuniversalelementsofchainrelaxation,isbasedondynamic scalingconsiderations[4,11].Inparticularinpolymersolutions,thisapproach o?ers an elegant tool to specify the general trends of polymer dynamics, although it su?ers from the lack of a molecular interpretation. A real test of these theoretical approaches requires microscopic methods, which simultaneously give direct access to the space and time evolution of the segmental di?usion. Here, quasi-elastic scattering methods play a crucial role sincetheyallowthemeasurementofthecorrespondingcorrelationfunctions.In particular,thehigh-resolutionneutronspinecho(NSE)spectroscopy[12-15]is very suitable for such investigations since this method covers an appropriate range in time (0.005)t/ns)40) and space (r/nm [15). Furthermore, the possibilityoflabellingbyhydrogen-deuteriumexchangeallowstheobservation of single-chain behavior even in the melt.
The incessantly interest in aqueous polymer dispersions (APD)
since more than 90 years can be related to the almost unlimited
possibilities to tailor APD to specific needs.
Shunsuke Hirotsu "Coexistence of Phases and the Nature of First-Order Transition in Poly-N-isopropylacrylamide Gels," Masayuki Tokita "Friction between Polymer Networks of Gels and Solvent," Masahiro Irie "Stimuli-Responsive Poly(N-isopropyl- acrylamide), Photo- and Chemicals-Induced Phases Transitions Edward Cussler, Karen Wang, John Burban"Hydrogels as Separation Agents," Stevin Gehrke "Synthesis, Equilibrium Swelling, Kinetics Permeability and Applications of Environmentally Responsive Gels," Pedro Verdugo "Polymer Gel Phase Transition in Condensation- Decondensation of Secretory Products," Etsuo Kokufuta "Novel Applications for Stimulus-Sensitive Polymer Gels in the Preparation of Functional Immobilized Biocatalysts," Teruo Okano "Molecular Design of Temperature-Responsive Polymers as Intelligent Materials," Atsushi Suzuki "Phase Transition in Gels of Sub-Millimeter Size Induced by Interaction with Stimuli," Makoto Suzuki, O. Hirasa "An Approach to Artificial Muscle by Polymer Gels due to Micro-Phase Separation."
The renewed and increasing interest in lipid self-assembly, phase behaviour and interfacial properties can be related to both a much improved insight in biological systems and the applications of lipids in food and pharmaceutical industry; in the latter, the development of drug delivery systems based on lipids has become in focus. Amphiphilic systems comprise lipids, surfactants as well as different types of polymers, including block and graft copolymers. Research on biological amphiphiles has often been conducted separate from research on synthetic ones. However, in recent years a very fruitful convergence between the two fields has evolved. These new perspectives on fundamental research and applications of lipids are discussed in these proceedings from an international symposium on "Lipid and Polymer Lipid-systems," October 2000 in Chia Laguna in Italy - a joint undertaking of Prof. Maura Monduzzi at Cagliari University, Italy and Camurus Lipid Research Foundation, Lund, Sweden.
This volume of the series gives an overview on Rigid Polymer Networks written by two reputed experts in the field. A broad range of densely-branched, highly-crosslinked aromatic networks and gels of increasing rigidity are discussed, with special emphasis on aromatic rigid liquid-crystal polymer networks. The synthetic procedures to create the networks are briefly described and extensively referenced. Features of one-step and two-step rigid networks in their pre-gel and post-gel states are discussed. Some first steps are then taken in the theoretical treatment of LCP networks with long aromatic segments of decreasing stiffness. The current state of theory dealing with the broader class of highly-crosslinked rigid aromatic networks and gels is finally mentioned.
The two volumes "New Developments in Polymer Analytics" deal with recent progress in the characterization of polymers, mostly in solution but also at s- faces. Despite the fact that almost all of the described techniques are getting on in years, the contributions are expected to meet the readers interest because either the methods are newly applied to polymers or the instrumentation has achieved a major breakthrough leading to an enhanced utilizaton by polymer scientists. The first volume concentrates on separation techniques. H. Pasch summarizes the recent successes of multi-dimensional chromatography in the characteri- tion of copolymers. Both, chain length distribution and the compositional h- erogeneity of copolymers are accessible. Capillary electrophoresis is widely and successfully utilized for the characterization of biopolymers, particular of DNA. It is only recently that the technique has been applied to the characterization of water soluble synthetic macromolecules. This contributrion of Grosche and Engelhardt focuses on the analysis of polyelectrolytes by capillary electopho- sis. The last contribution of the first volume by Coelfen and Antonietti sum- rizes the achievements and pitfalls of field flow fractionation techniques. The major drawbacks in the instrumentation have been overcome in recent years and the"triple F techniques" are currently advancing to a powerful competitor to size exclusion chromatography.
This book reviews recent advances in polymer swelling resulting from the use of novel microporous composite films. It offers a new approach to understanding sorption processes in polymer-liquid systems based on the molecular structures of the sorbed molecules and the repeat unit of the sorbent polymer. It is shown how the adsorption parameters obtained in these studies relate meaningfully with the Flory-Huggins interaction parameters. This implies that these adsorption parameters have relevance not only for swelling and drying of polymers, but also for other phenomena in which molecular sorption plays an important role, such as in chromatography and in membrane permeation.
Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.
While books have been written on many topics of Polymer Science, no compre hensive treatise on long chain branching has ever been composed. This series of reviews in Volume 142 and 143 of Advances in Polymer Science tries to fill this gap by highlighting active areas of research on branched polymers. Long chain branching is a phenomenon observed in synthetic polymers and in some natural polysaccharides. It has long been recognized as a major mole cular parameter of macromolecules. Its presence was first surmised by H. Stau dinger and G. V. Schuh (Ber. 68, 2320, 1935). Interestingly, their method of iden tification by means of the abnormal relation between intrinsic viscosity and molecular weight has survived to this day. Indeed, the most sophisticated method for analysis of long chain branching uses size exclusion fractionation with the simultaneous recording of mass, molecular weight and intrinsic visco sity of the fractions. In the 1940s and 1950s, random branching in polymers and its effect on their properties was studied by Stockmayer, Flory, Zimm and many others. Their work remains a milestone on the subject to this day. Flory dedicated several chapters of his "Principles of Polymer Chemistry" to non linear polymers. Especially important at that time was the view that randomly branched polymers are inter mediates to polymeric networks. Further developments in randomly branched polymers came from the introduction of percolation theory. The modern aspec ts of this topic are elaborated here in the chapter by W. Burchard.
This collection of articles gives a nice overview of the fast growing field of diffusion and transport. The area of non-Browman statistical mechanics has many extensions into other fields like biology, ecology, geophysics etc. These tutorial lectures address e.g. Levy flights and walks, diffusion on metal surfaces or in superconductors, classical diffusion, biased and anomalous diffusion, chemical reaction diffusion, aging in glassy systems, diffusion in soft matter and in nonsymmetric potentials, and also new problems like diffusive processes in econophysics and in biology."
The aesthetically pleasing molecular architectures of fullerenes and nanotubes are appealing not only because of their beauty but also because they are responsible for the many unprecedented chemical and physical properties of this compound class. Although succession of exciting new discoveries continues unabated fullerene research has become a mature science. It is now possible to predict fullerene chemistry, to design new structure variations like open fullerene clusters, heterofullerenes and endohedral fullerenes, and to develop fullerene materials and modified nanotubes with high potential for technological applications. This volume represents the state-of-the-art of fullerene research, focussing on areas showing high potential for future growth and practical applications. The authors are leading scientists whose groups are making major contributions in the field.
The book aims to describe the microscopic characterization of the soft matter in the light of new advances acquired in the science of microscopy techniques like AFM; SEM; TEM etc. It does not focus on the traditional information on the microscopy methods as well as systems already present in different books, but intends to answer more fundamental questions associated with commercially important systems by using new advances in microscopy. Such questions are generally not answered by other techniques. The contents of the book also reflect this as the chapters are not based on describing only material systems, but are based on the answering the problems or questions arising in their characterization. Both qualitative as well as quantitative analysis using such microscopic techniques is discussed. Moreover, efforts have been made to provide a broader reach as discussions on both polymers as well as biological matter have been included as different sections. Such a text with comprehensive overview of the various characterization possibilities using microscopy methods can serve as a valuable reference for microscopy experts as well as non-experts alike
Some years ago it was not uncommon for materials scientists, even within the electronics industry, to work relatively independently of device engi neers. Neither group had a means to determine whether or not the materials had been optimized for application in specific device structures. This mode of operation is no longer desirable or possible. The introduction of a new material, or a new form of a well known material, now requires a close collaborative effort between individuals who represent the disciplines of materials preparation, materials characterization, device design and pro cessing, and the analysis of the device operation to establish relationships between device performance and the materials properties. The develop ment of devices in heteroepitaxial thin films has advanced to the present state specifically through the unusually close and active interchange among individuals with the appropriate backgrounds. We find no book available which brings together a description of these diverse disciplines needed for the development of such a materials-device technology. Therefore, the authors of this book, who have worked in close collaboration for a number of years, were motivated to collect their experiences in this volume. Over the years there has been a logical flow of activity beginning with heteroepi taxial silicon and progressing through the III-V and II-VI compounds. For each material the early emphasis on material preparation and characteriza tion later shifted to an emphasis on the analysis of the device characteristics specific to the materials involved.
Over the past 40 years, Rotational Isomeric State (RIS) models for hundreds of polymer structures have been developed. The RIS approach is now available in several software packages. The user is often faced with the time-consuming task of finding appropriate RIS parameters from the literature. This book aims at easing this step by providing a comprehensive overview of the models available. It reviews the literature from the first applications of RIS models to the end of 1994, comprises synthetic as well as naturally orccuring macromolecules, and tabulates all the pertinent features of published models. It will help readers, even when not very familiar with the method, to take advantage of this computationally efficient way of assessing the conformational properties of macromolecular systems.
In recent years, a growing number of engineering applications of light weight and energy efficient plastics can be found in high quality parts vital to the func tioning of entire equipments and structures. Improved mechanical properties, especially balance of stiffness and toughness, are among the most frequently desired features of the new materials. In addition, reduced flammability is con sidered the single most important requirement for further expansion of plastics into large volume and demanding markets such as construction and mass trans port. Production of power cables also requires flame retardant cable jacketing plastics to replace or at least to reduce consumption of environmentally unsound PVC. The two principal ways to achieve the goals mentioned above include the development of completely new thermoplastic polymers and various modifica tions of the existing ones. Development and commercialization of a new ther moplastic require mobilization of large human and financial resources, the lat ter being within the range from $100 million to $10 billion, in comparison to $100 thousand to $10 million needed to develop and commercialize polymeric mate rial with prescribed end use properties using physical or chemical modification of an existing plastic. In addition, the various markets utilizing thermoplastics demand large flexibility in material properties with only moderate volumes, at the best. |
![]() ![]() You may like...
Fiber Materials - Design, Fabrication…
Jeenat Aslam, Chandrabhan Verma
Hardcover
R5,402
Discovery Miles 54 020
The Science and Function of…
Amanda S. Harper-Leatherman, Camille M. Solbrig
Hardcover
R5,922
Discovery Miles 59 220
Advances in Nanomaterials for Drug…
Mahdi Karimi, Maryam Rad Mansouri, …
Hardcover
R1,700
Discovery Miles 17 000
Carbon Allotropes - Nanostructured…
Jeenat Aslam, Chandrabhan Verma, …
Hardcover
R4,732
Discovery Miles 47 320
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,660
Discovery Miles 46 600
Mesoscale Models - From Micro-Physics to…
Sinisa Mesarovic, Samuel Forest, …
Hardcover
R4,622
Discovery Miles 46 220
|