![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
Computational mechanics, as a science employed for the numerical model ing of processes in nature and engineering, has over the last few decades developed two strands. The first concerns the putting of more and more powerful software packages into computational practice, using increas ingly high-performance computers with increasingly large memory. The traditional finite element and finite difference approaches are still preva lent. Over the years however, researchers have met with new problems; their solutions on the basis of traditional methods are at best difficult and at worst impossible to obtain. Such problems provided a powerful impetus in the development of the second strand, resulting in the development of es sentially new approaches for numerical modeling, for example meshless methods, "molecular" dynamics, neuron networks. The current state of the art formed the basis of many papers presented at the Fifth World Congress on Computational Mechanics, Vienna 2002. It is within the framework of the second strand that this book has been written."
Corrosion has been largely considered to be caused only abiotically, without regard of any biological influence. However, corrosion of organic materials, metals, minerals and plastics can be strongly influenced by microorganisms, enhancing the kinetics of the corrosion processes. This book presents case histories, theoretical explanations, and methods for the detection, sanitation and prevention of biologically influenced corrosion.
With contributions by: R.H. Boyd; B.G. Sumpter, D.W. Noid, G.L. Liang, B. Wunderlich; M.D. Ediger, D.B. Adolf; R.-J. Roe; I. Bahar, B. Erman, L. Monnerie; A.A. Gusev, F. Muller-Plathe, W.F. van Gunsteren, U.W. Suter; L.R. Dodd, D.N. Theodorou; E. Leontidis, J.J. de Pablo, M. Laso, U.W. Suter; K.S. Schweizer."
1. R.C. Mehrotra, Jaipur, India Present Status and Future Potential of the Sol-Gel Process 2. J. Fricke, A. Emmerling, Wuerzburg, FRG Aerogels - Preparation, Properties, Applications 3. S. Sakka, T. Yoko, Kyoto, Japan Sol-Gel-Derived Coating Films and Applications 4. H. Schmidt, Saarbruecken, FRG Thin Films, the Chemical Processing up to Gelation 5. M. Henry, J.P. Jolivet, J. Livage, Paris, France Aqueous Chemistry of Metal Cations: Hydrolysis, Condensation and Complexation 6. R. Reisfeld, Jerusalem, Israel, C.K. Joergensen, Geneva, Switzerland Optical Properties of Colorants or Luminescent Species in Sol-Gel Glasses
Among various branches of polymer physics an important position is occupied by that vast area, which deals with the thermal behav ior and thermal properties of polymers and which is normally called the thermal physics of polymers. Historically it began when the un usual thermo-mechanical behavior of natural rubber under stretch ing, which had been discovered by Gough at the very beginning of the last century, was studied 50 years later experimentally by Joule and theoretically by Lord Kelvin. This made it possible even at that time to distinguish polymers from other subjects of physical investigations. These investigation laid down the basic principles of solving the key problem of polymer physics - rubberlike elasticity - which was solved in the middle of our century by means of the statistical thermodynamics applied to chain molecules. At approx imately the same time it was demonstrated, by using the methods of solid state physics, that the low temperature dependence of heat capacity and thermal expansivity of linear polymers should fol low dependencies different from that characteristic of nonpolymeric solids. Finally, new ideas about the structure and morphology of polymers arised at the end of the 1950s stimulated the development of new thermal methods (differential scanning calorimetry, defor mation calorimetry), which have become very powerful instruments for studying the nature of various states of polymers and the struc tural heterogeneity."
-Effects of Electric Fields on Block Copolymer Nanostructures By H. G. Schoberth, V. Olszowka, K. Schmidt, and A. Boeker -Nanopattern Evolution in Block Copolymer Films: Experiment, Simulations and Challenges By L. Tsarkova, G.J. Agur Sevink, and G. Krausch -Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces By A. Schweikart, A. Horn, A. Boeker, and A. Fery -Layered Systems Under Shear Flow By D. Svensek and H. R. Brand -Thermal Diffusion in Polymer Blends: Criticality and Pattern Formation By W. Koehler, A. Krekhov, and W. Zimmermann -Foaming of Microstructured and Nanostructured Polymer Blends By H. Ruckdaschel, P. Gutmann, V. Altstadt, H. Schmalz, and A.H.E. Muller
There have been many recent and important developments based on effective field theory and the renormalization group in atomic, condensed matter, nuclear and high-energy physics. These powerful and versatile methods provide novel approaches to study complex and strongly interacting many-body systems in a controlled manner. The six extensive lectures gathered in this volume combine selected introductory and interdisciplinary presentations focused on recent applications of effective field theory and the renormalization group to many-body problems in such diverse fields as BEC, DFT, extreme matter, Fermi-liquid theory and gauge theories. Primarily aimed at graduate students and junior researchers, they offer an opportunity to explore fundamental physics across subfield boundaries at an early stage in their careers.
Critical regimes of two-phase flows with a polydisperse solid phase form the basis of such widespread industrial processes as separation of various powdery materials and minerals dressing. It is impossible to describe such complicated flows analytically. Therefore, this study concentrates on invariants experimentally revealed and theoretically grounded for such flows. This approach can be compared with the situation in gases, where in order to determine principal parameters of their state, one does not need to measure the kinetic energy and velocity of each molecule and find its contribution to the temperature and pressure. These parameters are determined in a simple way for the system on the whole. A novel conception of two-phase flows allowing the formulation of their statistical parameters is physically substantiated. On the basis of the invariants and these parameters, a comprehensive method of estimating and predicting mass transfer in such flows is developed. It is noteworthy that the presented results are mostly phenomenological. Such an approach can be successfully extended to the separation of liquids, gases and isotopes. The book is intended for students and specialists engaged in chemical technology, mineral dressing, ceramics, microelectronics, pharmacology, power generation, thermal engineering and other fields in which flows carrying solid particles are used in the technological process.
This book provides a comprehensive overview of contemporary basic research, emerging technology, and commercial and industrial applications associated with the electrophoretic deposition of nanomaterials. This presentation of the subject includes an historical survey, the underlying theory of electrophoresis, dielectrophoresis, and the colloidal deposition of materials. This is followed by an assessment of the experimental equipment and procedures for electrophoretic and dielectrophoretic aggregation, manipulation, and deposition of nanoparticles, nanotubes, and other nanomaterials. Additional chapters explore the specific science and technology of electrophoretic film formation, using widely studied and application-driven nanomaterials, such as carbon nanotubes, luminescent nanocrystals, and nano-ceramics. The concluding chapters explore industrial applications and procedures associated with electrophoretic deposition of nanomaterials.
This comprehensive treatise reviews, for the first time, all the essential work over the past 160 years on the photoelastic and the closely related linear and quadratic electro-optic effects in isotropic and crystalline mate rials. Emphasis is placed on the phenomenal growth of the subject during the past decade and a half with the advent of the laser, with the use of high-frequency acousto-optic and electro-optic techniques, and with the discovery of new piezoelectric materials, all of which have offered a feedback to the wide interest in these two areas of solid-state physics. The first of these subjects, the photoelastic effect, was discovered by Sir David Brewster in 1815. He first found the effect in gels and subsequently found it in glasses and crystals. While the effect remained of academic interest for nearly a hundred years, it became of practical value when Coker and Filon applied it to measuring stresses in machine parts. With one photograph and subsequent analysis, the stress in any planar model can be determined. By taking sections of a three-dimensional model, complete three-dimensional stresses can be found. Hence this effect is widely applied in industry."
This volume, the proceedings of a 1998 international workshop, provides experimental evidence of the effects of correlation on the physical, chemical, and mechanical properties of materials, as well as the theoretical/computational methodology that has been developed for their study.
Time-Resolved Light-Scattering from Excitons investigates exciton
states in semiconductors and their relaxation processes by
time-resolved light-scattering.
The properties of soft-matter thin films (e.g. liquid films, polymer coatings, Langmuir-Blodgett multilayers) nowadays play an important role in materials science. They are also very exciting with respect to fundamental questions: In thin films, liquids and polymers may be considered as trapped in a quasi-two-dimensional geometry. This confined geometry is expected to alter the properties and structures of these materials considerably. This volume is dedicated to the scattering of x-rays by soft-matter interfaces. X-ray scattering under grazing angles is the only tool to investigating these materials on atomic and mesoscopic length scales. A review of the field is presented with many examples.
Over the past 40 years, Rotational Isomeric State (RIS) models for hundreds of polymer structures have been developed. The RIS approach is now available in several software packages. The user is often faced with the time-consuming task of finding appropriate RIS parameters from the literature. This book aims at easing this step by providing a comprehensive overview of the models available. It reviews the literature from the first applications of RIS models to the end of 1994, comprises synthetic as well as naturally orccuring macromolecules, and tabulates all the pertinent features of published models. It will help readers, even when not very familiar with the method, to take advantage of this computationally efficient way of assessing the conformational properties of macromolecular systems.
This book reviews recent advances in polymer swelling resulting from the use of novel microporous composite films. It offers a new approach to understanding sorption processes in polymer-liquid systems based on the molecular structures of the sorbed molecules and the repeat unit of the sorbent polymer. It is shown how the adsorption parameters obtained in these studies relate meaningfully with the Flory-Huggins interaction parameters. This implies that these adsorption parameters have relevance not only for swelling and drying of polymers, but also for other phenomena in which molecular sorption plays an important role, such as in chromatography and in membrane permeation.
Most of the untreated surfaces of polymers used in industry are not hydrophilic but hydrophobic. It is, therefore, difficult to bond these nonpolar polymer sur faces directly to other substances like adhesives, printing inks, and paints because they generally consist of polar compounds. On the other hand, polymer surfaces generally adsorb proteins when brought into direct contact with a bio logical system, resulting in cell attachment or platelet aggregation. The protein adsorption and attachment of biological components trigger a subsequent series of mostly adverse biological reactions toward the polymeric materials. Therefore, the technologies for surface modification of polymers or regulation of the polymer surface interaction with other substances have been of prime importance in polymer applications from the advent of polymer industries. Some of the technologies have been directed to introduction of new function alities onto polymer surfaces. The new functionalities introduced include improved surface hydrophilicity, hydrophobicity, bio compatibility, conductivi ty, anti-fogging, anti-fouling, grazing, surface hardness, surface roughness, adhesion, lubrication, and antistatic property. Theoretically, there is a large dif ference in properties between the surface and the bulk of a material and only the outermost surface is enough to be taken into consideration when the sur face properties are concerned. However, this is not the case for polymer surfaces, as the physical structure of the outermost polymer surface is generally not fixed but continuously changing with time due to the microscopic Brownian motion of polymer segments."
Self-assembly is undoubtedly a topic of special interest in current chemistry and is related to very wide scientific areas. Recent progress in this field seems to be featured by the construction of well-defined discrete systems exploiting complementary hydrogen bonding as well as coordination bonding. Seven leading international experts introduce the current topics in this very interesting field, focusing on two major subjects: organic assemblies and inorganic assemblies. All researchers who are interested in molecular recognition, material science, nanotechnology, and supramolecular chemistry will welcome this book as an inspiring source for creative research ideas.
This volume contains the proceedings of The Second Polish-US Conf- ence on High Temperature Superconductivity which was held August 18-21, 1998 in Karpacz, Poland. The conference followed The First Polish-US C- ference on High Temperature Superconductivity organized in 1995, proce- ings of which were published by Springer-Verlag in 1996 (Recent Devel- ments in High Temperature Superconductivity, Lecture Notes in Physics 475). High Temperature Superconductivity (HTSC) in complex copper oxides has become a household name after twelve years of intense research following its discovery in 1986 by J. G. Bednorz and K. A. Miiller. Because of the rapid growth of the HTSC field, there is a need for periodic summary and conden- tion both for scientists working in the field and, especially, for young resear- ers entering the field of oxide materials. Following the First Conference, it was recognized that an extended format of lectures perfectly satisfied that need, providing adequate time for experts from the international community to fully introduce and develop complex ideas. Thus, the format of the Second Conference brought together by cooperating scientists from the Institute of Low Temperature and Structure Research of the Polish Academy of Science at Wroctaw, Northern Illinois University, and Argonne National Laboratory remained mostly unchanged. Again, we were delighted to receive enthusiastic responses from distinguished US and Polish scientists who were invited to p- ticipate.
Universality is one of the fascinating features of condensed matter physies: it is the property whereby systems of radieally different composition and structure ex- hibit similar behavior. In the mid-1960s the word entered usage to express the fact that the equations of state of several substances could be mapped onto one another near the critical point: critieal universality. Renormalization group theory in the early 1970s provided both an explanation and a sharper definition of universality. Systems with similar behavior - universality classes - correspond to the same fixed point of a renormalization group transformation. A number of brilliant con- tributions showed how the same concepts could be applied to non-thermodynamie systems, such as the statisties of self-avoiding walks or of connected clusters on a lattice. A few years later it was realized that chaotie dynamieal systems mayaiso exhibit some degree of universality, the paradigmatic example being the period doubling cascade in the iterated maps of the unit interval into itself.
Understanding the structural organization of materials at the atomic scale is a lo- standing challenge of condensed matter physics and chemistry. By reducing the size of synthesized systems down to the nanometer, or by constructing them as collection of nanoscale size constitutive units, researchers are faced with the task of going beyond models and interpretations based on bulk behavior. Among the wealth of new materials having in common a "nanoscale" ngerprint, one can encounter systems intrinsically extending to a few nanometers (clusters of various compo- tions), systems featuring at least one spatial dimension not repeated periodically in space and assemblies of nanoscale grains forming extended compounds. For all these cases, there is a compelling need of an atomic-scale information combining knowledge of the topology of the system and of its bonding behavior, based on the electronic structure and its interplay with the atomic con gurations. Recent dev- opments in computer architectures and progresses in available computational power have made possible the practical realization of a paradygma that appeared totally unrealistic at the outset of computer simulations in materials science. This consists inbeing able to parallel (at least inprinciple) any experimental effort by asimulation counterpart, this occurring at the scale most appropriate to complement and enrich the experiment.
On first acquaintance the electric arc discharge appears to be both visually attractive and a relatively simple phenomena to understand. To those of us engaged in prolonged study of this discharge, it remains a constantly exciting phenomena but we become only too aware of its complex nature and the difficulties in interpreting its bulk properties. This is particu larly true when the arc exists in a practical device and is subjected therefore to extreme conditions. In recent years the possibilities for the beginning of a fuller understanding of the complexities of the arc has arisen out of the excellent research and development work of scientists and engineers throughout the world. Much of this work has been stimulated not only by the need for the development of practical devices but also by the interest in thermonuclear fusion, mag netohydrodynamic generation and space exploration. In much of this work, the arc discharge has been a common feature as a source of study of high temperature plasma. As a result of this increased interest in the arc, the expert and would-be expert is now faced with the problem of assessing extensive newly published information on arc properties. Thus there is the need for texts which present to the engineer and researcher a review and summary of the present situation. This book is a valuable contribution to this task."
Although the subject of wave propagation in solids has a long history, the classical theory of elastic waves having been developed in the nine- teenth century by STOKES, POISSON, RAYLEIGH and KELVIN, the last two decades have seen a remarkable revival of interest in this subject among both theoreticians and experimenters. There' are a number of reasons for this; first, experimental methods for the generation and detection of high frequency mechanical waves have become available only with the advent of electronic techniques and of high speed photo- graphic recording apparatus. Secondly, the appearan |
You may like...
Essays in Index Number Theory
Walter E. Diewert, A.O. Nakamura
Hardcover
R4,976
Discovery Miles 49 760
4D CAD and Visualization in Construction…
Raymond Issa, I. Flood, …
Hardcover
R8,317
Discovery Miles 83 170
The Bacchae of Euripides; 5
Euripides, Gilbert 1866-1957 Murray
Hardcover
R760
Discovery Miles 7 600
Comparative Approaches to Using R and…
Rui Sarmento, Vera Costa
Hardcover
R4,493
Discovery Miles 44 930
Handbook of Military Psychology…
Stephen V. Bowles, Paul T. Bartone
Hardcover
R5,054
Discovery Miles 50 540
|