![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
Since the discovery that polymer single crystals are composed of chain folded macromolecules in 1957, the crystallization of polymers has attracted considerable interest and still provides fascinating and fruitful areas of research. Only a few books have been fully devoted to the crystallization of polymers in the past. This book contains the proceedings of the NATO ARW devoted to the `Crystallization of Polymers' which took place in September 1992 at the University of Mons-Hainaut (Belgium). In view of the variety of papers devoted to the crystallization of polymers, this book will be used in the next few years as a reference book for scientists concerned in the field of polymer physical chemistry. Crystallization of Polymers is mainly devoted to the experimental and theoretical study of the crystallization of synthetic polymers. As a kinetic study of the growth of polymer crystals should always be preceded by a morphological or a structural investigation, the structure, the morphology of polymer crystals and more particularly the lamellar and supralamellar organizations, as well as the nature of the crystal amorphous interface are reviewed and discussed.
This vohune contains the papers presented at the Adriatico Research Conference on Structural and Phase Stability of Alloys held in Trieste, Italy, in May 1991, under the auspices of the International Centre for Theoretical Physics. The conference brought together participants with a variety of interests in theoretical and experimental aspects of alloys from Argentina, Belgium, Bulgaria, Czechslovakia, France, Germany, Italy, Japan, Mexico, People's Republic of Congo, Portugal, Switzerland, United Kingdom, United States, U. S. S. R., and Venezuela. The conference was purposely designed to succinctly cover experimental and the oretical aspects of magnetic and non-magnetic alloys, surfaces, thin films and nanos tructures. The Conference opened with an overview of a select class of advanced structural materials, with a potential in engineering applications, for which the con ventional "physics" approach, both theoretical and experimental, should have a sig nificant impact. A number of papers were dedicated to the use of phenomenological approaches for the description of thermodynamic bulk and surface properties. It was clear from these presentations that the phenomenological models and simulations in alloy theory have reached a high degree of sophistication. Although with somewhat limited predictive powers, the phenomenological models provide a valuable tool for the understanding of a variety of subtle phenomena such as short-range order, phase stability, kinetics and the thermodynamics of surfaces and antiphase boundaries, to name a few."
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics." Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent."
Toachieve design, implementation,and servicing ofcomplex systems and struc tures in an efficient and cost-effective way,a deeper knowledge and understanding of the subtle cast and detailed evolution of materials is needed. The analysis in demand borders with the molecular and atomic one, spanning all the way down from classical continua. The study of the behavior of complex materials in sophisticated devices also opens intricate questions about the applicability of primary axioms ofcontinuum mechanics such as the ultimate nature of the material element itselfand the possibility ofidentifying itperfectly. So it is necessary to develop tools that allow usto formulate both theoretical models and methods of numerical approximation for the analysis of material substructures. Multifield theories in continuum mechanics, which bridge classical materials science and modern continuum mechanics, provide precisely these tools. Multifield theories not only address problems of material substructures, but also encompass well-recognized approaches to the study of soft condensed matter and allow one to model disparate conditions in various states ofmatter. However, research inmultifield theories is vast, and there is little in the way of a comprehensive distillation of the subject from an engineer's perspective. Therefore, the papers in the present volume, 1 which grew out of our experience as editors for an engineeringjournal, tackle some fundamental questions,suggest solutions of concrete problems, and strive to interpret a host of experimental evidence. In this spirit, each of the authors has contributed original results having in mind their wider applicability.
Summary of the recent progress in ceramics research. Several novel concepts for materials selection and microstructural design are presented, as are experimental results that substantiate the ideas.
With this proceedings volume a new series of publications is started which will present the results of interdisciplinary research activities in the fields of materials science, coupling of biological and electronic systems and commu nication ergonomy. It will contain the contributions of the participants of the caesarium, a conference caesar will organize annually. The 1 st caesarium was held in Bonn on November 17-19, 1999 concentrating on Smart Materials. With the caesarium the recently founded research center caesar (center of advanced european studies and research) creates a forum for discussion of new developments in its fields of activities. caesar is an international research center, focusing on applied, interdisciplinary research projects in the areas of science and engineering. It was established as an independent foundation under private law as part of the compensatory actions under the Berlin/Bonn law of April 26, 1994 to support the structural change in the region of Bonn, when the German Government moved from Bonn to Berlin. The main donors of caesar are the Federal Republic of Germany and the State of North Rhine-Westphalia. A Board consisting of state and federal leg islators, members from the research community and industry and a Scientific Advisory Council assist caesar in all decisions concerning administration and research.
Soils are complex materials: they have a particulate structure and fluids can seep through pores, mechanically interacting with the solid skeleton. Moreover, at a microscopic level, the behaviour of the solid skeleton is highly unstable. External loadings are in fact taken by grain chains which are continuously destroyed and rebuilt. Many issues of modeling, even of the physical details of the phenomena, remain open, even obscure; de Gennes listed them not long ago in a critical review. However, despite physical complexities, soil mechanics has developed on the assumption that a soil can be seen as a continuum, or better yet as a medium obtained by the superposition of two and sometimes three con and the other fluids, which occupy the same portion of tinua, one solid space. Furthermore, relatively simple and robust constitutive laws were adopted to describe the stress-strain behaviour and the interaction between the solid and the fluid continua. The contrast between the intrinsic nature of soil and the simplistic engi neering approach is self-evident. When trying to describe more and more sophisticated phenomena (static liquefaction, strain localisation, cyclic mo bility, effects of diagenesis and weathering, ..... ), the nalve description of soil must be abandoned or, at least, improved. Higher order continua, incrementally non-linear laws, micromechanical considerations must be taken into account. A new world was opened, where basic mathematical questions (such as the choice of the best tools to model phenomena and the proof of the well-posedness of the consequent problems) could be addressed.
Layered crystals, characterized by a quasi-two-dimensional character of certain physical properties, play an interesting role in surface science. First of all they provide excellent inert substrates for epitaxial deposition and physisorption studies. The surfaces of layered crystals, however, are interesting in their own right because they make a relevant class of low-dimensional phenomena accessible to surface probes. Change density waves, incommensurate structures, phonon anomalies and high Tc superconductivity are well known examples. This book collects a series of review articles written by outstanding specialists on the structural assessment and spectroscopy of layered structures with surface-sensitive probes such as scanning microscopy and helium atom scattering, the theoretical analysis of their electronic and vibrational surface states, and the investigation of physisorbed overlayers.
This volume focuses on modeling processes for which transport is one of the most complicated components, requiring different transport models in each region. The authors apply questions to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.
The idea of writing this book orIgmates from a suggestion of Bernard Sapoval: "Why don't you write it?" he asked. "Coulomb screening is a problem that everybody encounters in many different contexts, and there is no textbook that gathers the various aspects ofthe subject. " The content ofthe book, in a shorter form, was first taught for four years as a course in Dipl6me d'Etudes Approfondies Sciences des Materiaux, headed by Prof. J. -F. Petroff, at Paris VI University. The present extended version was written after discussions with Alia Margolina-Litvin. An essential feature of screening is its role in many different scientific areas. For that reason, the book is intended for use by a multidisciplinary readership. Reading it requires only a basic knowledge ofelectromagnetism, elementary quantum mechanics, and thermal physics. The spirit of the pre sentation is "simplicity first": new concepts (e. g. , dielectric function) are first introduced in their most elementary form and are progressively extended to more generality. The book stays at a basic level, and additional abstract developments that might have been included have been either omitted, rele gated to an appendix, or summarized in a qualitative manner. Apart from these restrictions, care has been taken to keep the presentation as rigorous as possible: the topics addressed are dealt with quantitatively, the results are given in mathematical form, and the interested reader should be able to fol low the algebra all the way through.
The workshop on "Optical Properties of Low Dimensional Silicon sL Structures" was held in Meylan, France on March, I yd, 1993. The workshop took place inside the facilities of France Telecom- CNET. Around 45 leading scientists working on this rapidly moving field were in attendance. Principal support was provided by the Advanced Research Workshop Program of the North Atlantic Treaty Organisation (NATO). French Delegation a l'Armement and CNET gave also a small financial grant, the organisational part being undertaken by the SEE and CNET. There is currently intense research activity worldwide devoted to the optical properties of low dimensional silicon structures. This follow the recent discovery of efficient visible photoluminescence (PL) from highly porous silicon. This workshop was intended to bring together all the leading European scientists and laboratories in order to reveal the state of the art and to open new research fields on this subject. A large number of invited talks took place (12) together with regular contribution (20). The speakers were asked to leave nearly 1/3 of the time to the discussion with the audience, and that promoted both formal and informal discussions between the participants.
IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wdie range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.
The unexpected and therefore really amazing discovery of J.G. Bednorz and K.A. Muller, that certain oxide compounds enter a superconductivity state at temperatures above 30 K, pushed research on superconductivity into the limelight of science in general in a way that seemed reserved only for high energy or particle physics. It may therefore be expected that this entire review would solely deal with superconductivity at high temperatures, i.e. above the boiling point of hydrogen. Any unexpected occurrence of superconductivity is, however, a challenge to scientists interested either in the physics of this phenomenon or in its materials science aspects. In this respect, the eighties have been quite revolutionary in the sense that, on various occasions, superconductivity was discovered in materials whose physical properties were not obviously favourable for adopting this ground state. Therefore, apart from emphasizing the topic of oxide superconductors, this collection of reprints also contains a selection of papers that deal with other subjects, such as coexistence of magnetic order and superconductivity, heavy electron and organic superconductors. This is all the more justified when we consider the fact that various aspects of superconductivity in high Tc oxide compounds are, or might be, connected with features that are also observed in these other materials. For nonspecialists who might be interested in this collection of reprints the Editor briefly reviews the possibilities for identifying superconductivity and discusses some special features of the superconducting state. "
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused works. Specific applications presented include plasma kinetic models, traffic flow models, granular media models, and coagulation-fragmentation problems. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.
Supramolecular stereochemistry is a topic with enormous breadth, and this book brings together experts in polymer chemistry, bioorganic chemistry, crystallography, materials science, dendrimer science, nanochemistry, conformational analysis, molecular recognition chemistry, and topological stereochemistry. Contains 19 plenary and 12 poster contributions.
-Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles By S. Lerouge, J.-F. Berret -Laser-Interferometric Creep Rate Spectroscopy of Polymers By V. A. Bershtein, P. N. Yakushev -Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application K. Matras-Postolek, D. Bogdal
Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions. The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the `conductance quantum'. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered. Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, are discussed. The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of great importance.
Catalysis and catalyst is a key technology to solve the problems in energy and environment issues to sustain our human society. We believe that comprehensive understanding of the catalysis and catalyst provides us a chance to develop a new catalyst and contributes greatly to our society. However, the ?eld of heterogeneous catalyst is dif?cultto study andstill stays behindmoredeveloped?elds ofchemistry such as organic and physical chemistries. This is a dilemma to the chemists who study the catalysis and catalyst. While we can accomplish the progress in the - dustrial application, the scienti?c understandingis not complete yet. A gap between the useful application and incomplete scienti?c understanding, however, becomes smaller and smaller in recent years. Because zeolites are ?ne crystals, and the structure is clearly known, the study on the catalysis using the zeolites is easier than those encountered in other catalysts such as metals and metal oxides. Very fortunately, zeolites provide us the strong acidity with the ?ne distribution which enables various useful catalytic reactions. When some metals and cations are loaded in close to the acid sites, these loadede- ments show extraordinarycharacters, and many catalytic reactions proceed thereon.
This volume includes 11 contributions to the 23rd Conference of the European Colloid and Interface Society which took in Antalya, Turkey between September 6th and 11th, 2009. The contributions from leading scientists cover a broad spectrum of topics concerning* Self Assembly* Interfacial Phenomena* Colloidal Dispersions and Colloidal Stability* Polymer Solution, Gels and Phase Behaviour* Nanostructured Materials* Biomaterials and Medical AspectsDue to the increasing significance of Colloid and Interface Science for both scientific and technical applications where scientific principles also contribute to new technologies in fast improving Nanotechnology and Medical Science, this book will be an essential source of information with respect to recent developments and results related to this field.
The fourth volume of the Collected Works is devoted to Wigners contribution to physical chemistry, statistical mechanics and solid-state physics. One corner stone was his introduction of what is now called the Wigner function, while his paper on adiabatic perturbations foreshadowed later work on Berry phases. Although few in number, Wigners articles on solid-state physics laid the foundations for the modern theory of the electronic structure of metals.
An assessment of the recent achievements and relative strengths of two developing techniques for characterising surfaces at the nanometer scale: (i) local probe methods, including scanning tunnelling microscopy and its derivatives; and (ii) nanoscale photoemission and absorption spectroscopy for chemical analysis. The keynote lectures were delivered by some of the world's best scientists in the field and some of the topics covered include: (1) The possible application of STM in atomically resolved chemical analysis. (2) The principles of scanning force/friction and scanning near-field optical microscopes. (3) The scanning photoemission electron microscopes built at ELETTRA and SRRC, with a description of synchrotron radiation microscopy. (4) Recent progress in the development of spatially-resolved photoelectron microscopy, especially the use of zone plate photon optics. (5) The present status of non-scanning photoemission microscopy with slow electrons. (6) the BESSY 2 project for a non-scanning photoelectron microscope with electron optics. (7) Spatially-resolved in situ reaction studies of chemical waves and oscillatory phenomena with the UV photoemission microscope.
This volume contains papers presented at the NATO Advanced Research Workshop (ARW) on Photons and Local Probes. The workshop had two predecessors. The first was the NATO ARW on Near Field Optics, held in October 1992 at Arc et Senans and was organized by Daniel Courjon and Dieter Pohl. The other predecessor was a workshop on Photons and Scanning Probe Microscopies held at the University of Konstanz in July 1992. The workshop on Photons and Local Probes was held at the Loechnerhaus on the Reichenau Island at the Lake of Constance, from September 11 to 17, 1994. The Reichenau Island was an important place in Europe in the middle age. Even the tomb of one of the carolingian emperors, Charles the Fat, is located there. At this workshop more than 60 scientists from Europe and the United States met to communicate their latest results in the field of local probes in combination with optical techniques. In eight sessions 31 talks as well as 9 posters were presented. Among those 31 publications were submitted for publication in the NATO proceedings. They were accepted after a strict, but constructive refereeing process.
This understandable and inspiring book brings together both theorists and experimentalists working on the properties of nuclear and hadronic matter produced in heavy-ion collisions in various energy ranges. The main focus is on experimental signals revealing the possible phase changes of the matter.
ThisvolumerepresentstheproceedingsofaNATOAdvancedResearchWorkShop(ARW) on the topic of "Sensorimotor Impairment in the Elderly" held at the Residenz Hotel, Bad Windsheim, Germany, September 11-13, 1992. The Residenz Hotel provided a pleasarit setting for the ARW in a historic environment. ' The motivation of this ARW was to provide some coherence to the widely scattered literature on motorimpairmentsin the elderly by bringing together, for atwo day workshop, many of the prominent individuals who are doing much of the contemporary research on sensorimotor aging. Our hope was to advance knowledge by having tutorial lectures and provocative discussions. As directors, we wanted the ARW to appraise the main theoretical ideas that currently characterize sensorimotor research on older adults. Our hope is that this volume will provide a review of some of the diverse literature on sensorimotor integration problems in the elderly. What was abundantly clear [TOm the presentations and discussions was how much more remains to be discovered about how motor and sensory systems change with age. The stimulus provided by this volume should be an invaluable reference in the years to come. Thevolume isorganized around five topicthemes: SensorimotorIntegration, AgeChanges in Muscle, Posture and Locomotion, Neurological Diseases, and Effects ofTraining. While they are not comprehensive, the topic themes reflect the structure of the ARW. The chapters within each topic discuss many ofthe currently debated questions on sensorimotormechanisms and how they are altered by age.
Advanced composite materials have been a major research focus for the past forty years. As a reinforcement for conventional materials including glass, ceramics and polymers, carbon has proved to be the most successful. Carbon gives these materials flexibility so that they may be produced in bulk form with a wide variety of properties. Whereas carbon/carbon composites are the most effective materials in extreme temperature conditions. Application ranges from brakes to missile nose cones. Carbon Reinforcements and Carbon/Carbon Composites gives the present state on this subject in comprehensive form, as well as projections for other "High Tech" materials and their application. |
You may like...
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,394
Discovery Miles 23 940
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Behaviourism in Studying Swarms: Logical…
Andrew Schumann
Hardcover
|