|
|
Books > Science & Mathematics > Physics > Applied physics & special topics > General
The chapters in this monograph are contributions from the Advances
in Quantum Monte Carlo symposium held at Pacifichem 2010,
International Chemical Congress of Pacific Basin Societies. The
symposium was dedicated to celebrate the career of James B.
Anderson, a notable researcher in the field. Quantum Monte Carlo
provides an ab initio solution to the Schroedinger equation by
performing a random walk through configuration space in imaginary
time. Benchmark calculations suggest that its most commonly-used
variant, "fixed-node" diffusion Monte Carlo, estimates energies
with an accuracy comparable to that of high-level coupled-cluster
calculations. These two methods, each having advantages and
disadvantages, are complementary "gold-standards" of quantum
chemistry. There are challenges facing researchers in the field,
several of which are addressed in the chapters in this monograph.
These include improving the accuracy and precision of quantum Monte
Carlo calculations; understanding the exchange nodes and utilizing
the simulated electron distribution; extending the method to large
and/or experimentally-challenging systems; and developing hybrid
molecular mechanics/dynamics and Monte Carlo algorithms.
Flight dynamics create important research problems in the process
of helicopter design. They involve advanced design ideas and
engineering technology theories. This book concerns flight theory
and research methods for helicopter flight science and technology.
The contents include the fundamentals of rotor aerodynamics,
helicopter trim, helicopter stability and control, and helicopter
performance analyses. The book also lokks at the kinematics,
dynamics, control, and aerodynamics of the helicopter during
maneuvering flight. With an emphasis on the physical concepts, the
characteristics of rotor flapping, theoretical analyses and
numerical simulation methods for helicopter flight mechanics are
detail described in detail. The book is primarily intended for
senior undergraduates and postgraduates who major in aerospace
engineering. It is also a good reference book for helicopter
engineers interested design and operational engineering. It lays a
foundation for the study of helicopter aeromechanics.
Monte Carlo methods are a class of computational algorithms for
simulating the behavior of a wide range of various physical and
mathematical systems (with many variables). Their utility has
increased with general availability of fast computers, and new
applications are continually forthcoming. The basic concepts of
Monte Carlo are both simple and straightforward and rooted in
statistics and probability theory, their defining characteristic
being that the methodology relies on random or pseudo-random
sequences of numbers. It is a technique of numerical analysis based
on the approximate solution of a problem using repeated sampling
experiments and observing the proportion of times a given property
is satisfied.
The term Monte Carlo was first used to describe calculational
methods based on chance in the 1940s, but the methods themselves
preceded the term by as much as a century. Quantum Monte Carlo
(QMC) first appeared in 1982 and similarly was preceded by
development of the related calculational methodology. The success
of QMC methods over the past few decades has been remarkable, and
this book will clearly demonstrate that success in its discussion
of applications. For isolated molecules, the basic material of
chemistry, QMC methods have produced exact solutions of the
Schroedinger equation for very small systems and the most accurate
solutions available for very large systems. The range of
applications is impressive: folding of protein molecules,
interactions in liquids, structure modeling in crystals and
enzymes, quantum dots, designing heat shields and aerodynamic
forms, architecture, design, business and economics, and even
cinema and video games (3D modeling).
This booktakes a similar approach to Henry Schaefers classic book
Quantum Chemistry (OUP, 1984 now a Dover edition), collecting
summaries of some of the most important papers in the quantum Monte
Carlo literature, tying everything together with analysis and
discussion of applications. Quantum Monte Carlo is a reference book
for quantum Monte Carlo applications, belonging near the desk of
every quantum chemist, physicist, and a wide range of scientists
and engineers across many disciplines, destined to become a
classic.
This book begins with the history and fundamentals of optical fiber
communications. Then, briefly introduces existing optical
multiplexing techniques and finally focuses on spatial domain
multiplexing (SDM), aka space division multiplexing, and orbital
angular momentum of photon based multiplexing. These are two
emerging multiplexing techniques that have added two new degrees of
photon freedom to optical fibers.
The world of single-board computing puts powerful coding tools in
the palm of your hand. The portable Raspberry Pi computing platform
with the power of Linux yields an exciting exploratory tool for
beginning scientific computing. Science and Computing with
Raspberry Pi takes the enterprising researcher, student, or
hobbyist through explorations in a variety of computing exercises
with the physical sciences. The book has tutorials and exercises
for a wide range of scientific computing problems while guiding the
user through: Configuring your Raspberry Pi and Linux operating
system Understanding the software requirements while using the Pi
for scientific computing Computing exercises in physics, astronomy,
chaos theory, and machine learning
This book demonstrates Microsoft EXCEL-based Fourier transform of
selected physics examples. Spectral density of the auto-regression
process is also described in relation to Fourier transform. Rather
than offering rigorous mathematics, readers will "try and feel"
Fourier transform for themselves through the examples. Readers can
also acquire and analyze their own data following the step-by-step
procedure explained in this book. A hands-on acoustic spectral
analysis can be one of the ideal long-term student projects.
This book contains an extensive illustration of use of finite
difference method in solving the boundary value problem
numerically. A wide class of differential equations has been
numerically solved in this book. Starting with differential
equations of elementary functions like hyperbolic, sine and cosine,
we have solved those of special functions like Hermite, Laguerre
and Legendre. Those of Airy function, of stationary localised
wavepacket, of the quantum mechanical problem of a particle in a 1D
box, and the polar equation of motion under gravitational
interaction have also been solved. Mathematica 6.0 has been used to
solve the system of linear equations that we encountered and to
plot the numerical data. Comparison with known analytic solutions
showed nearly perfect agreement in every case. On reading this
book, readers will become adept in using the method.
The Boundary Element Method for Engineers and Scientists: Theory
and Applications is a detailed introduction to the principles and
use of boundary element method (BEM), enabling this versatile and
powerful computational tool to be employed for engineering analysis
and design. In this book, Dr. Katsikadelis presents the underlying
principles and explains how the BEM equations are formed and
numerically solved using only the mathematics and mechanics to
which readers will have been exposed during undergraduate studies.
All concepts are illustrated with worked examples and problems,
helping to put theory into practice and to familiarize the reader
with BEM programming through the use of code and programs listed in
the book and also available in electronic form on the book's
companion website.
Advanced fiber materials have been developed for various superior
applications because of their higher mechanical flexibility,
high-temperature resistance, and outstanding chemical stability.
This book presents an overview of the current development of
advanced fiber materials, fabrication methods, and applications.
Applications covered include pollution control, environment,
energy, information storage technology, optical and photonic,
photocatalysis, textile, drug delivery, tumor therapy, corrosion
protection applications, and a state of art of advanced fiber
materials.
The Outside the Research Lab series is a testament to the fact that
the physics taught to high school and university students IS used
in the real world. This book explores the physics and technology
inherent to a selection of sports which have caught the author's
attention and fascination over the years. Outside the Research Lab,
Volume 3 is a path to discovering how less commonly watched sports
use physics to optimize performance, diagnose injuries, and
increase access to more competitors. It covers Olympic and
Paralympic fencing, show jumping horses, and arguably the most
brutal of motorsports - drag racing. Stunning images throughout the
book and clear, understandable writing are supplemented by offset
detail boxes which take the physics concepts to higher levels.
Outside the Research Lab, Volume 3 is both for the general interest
reader and students in STEM. Lecturers in university physics,
materials science, engineering and other sciences will find this an
excellent basis for teaching undergraduate students the range of
applications for the physics they are learning. There is a vast
range of different areas that require expertise in physics...this
third volume of Outside the Research Lab shows a few with great
detail provided by professionals doing the work.
Today, air-to-surface vessel (ASV) radars, or more generally
maritime surveillance radars, are installed on maritime
reconnaissance aircraft for long-range detection, tracking and
classification of surface ships (ASuW - Air to Surface Warfare) and
for hunting submarines (ASW - anti-submarine warfare). Such radars
were first developed in the UK during WWII as part of the response
to the threat to shipping from German U-Boats. This book describes
the ASV radars developed in the UK after WWII (1946-2000) and used
by the RAF for long-range maritime surveillance.
Domain theory, a subject that arose as a response to natural
concerns in the semantics of computation, studies ordered sets
which possess an unusual amount of mathematical structure. This
book explores its connection with quantum information science and
the concept that relates them: disorder. This is not a literary
work. It can be argued that its subject, domain theory and quantum
information science, does not even really exist, which makes the
scope of this alleged 'work' irrelevant. BUT, it does have a
purpose and to some extent, it can also be said to have a method. I
leave the determination of both of those largely to you, the
reader. Except to say, I am hoping to convince the uninitiated to
take a look. A look at what? Twenty years ago, I failed to
satisfactorily prove a claim that I still believe: that there is
substantial domain theoretic structure in quantum mechanics and
that we can learn a lot from it. One day it will be proven to the
point that people will be comfortable dismissing it as a
'well-known' idea that many (possibly including themselves) had
long suspected but simply never bothered to write down. They may
even call it "obvious!" I will not bore you with a brief history
lesson on why it is not obvious, except to say that we have never
been interested in the difficulty of proving the claim only in
establishing its validity. This book then documents various
attempts on my part to do just that.
Advances in Imaging & Electron Physics merges two long-running
serials-Advances in Electronics & Electron Physics and Advances
in Optical & Electron Microscopy. The series features extended
articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science, and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains.
Today, air-to-surface vessel (ASV) radars, or more generally
airborne maritime surveillance radars, are installed on maritime
reconnaissance aircraft for long-range detection, tracking and
classification of surface ships (ASuW--anti-surface warfare) and
for hunting submarines (ASW--anti-submarine warfare). Such radars
were first developed in the UK during WWII as part of the response
to the threat to shipping from German U boats. This book describes
the ASV radars developed in the UK and used by RAF Coastal Command
during WWII for long-range maritime surveillance.
Renewable energy (RE) is a subject of great interest today. It is
one of the two main means for implementing climate change
mitigation programmes, and presently the only perceived means for
replacing the declining global fossil fuel reserves. It also helps
fight poverty and assists in the global quest for gender equity by
taking clean energy where it is needed most for development. It is
perhaps not surprising therefore that there is so much coverage of
RE in both the conventional media and the internet by media and
tech writers, economists and bloggers, many of who only have a
partial understanding of the technology itself. The end result is
mostly promotional rhetoric that says little about the true value
of the technology, and leads to a confused picture for the serious
individual or decision-maker who wants to know what the technology
is really capable of doing. This book provides a clear and factual
picture of the status of RE and its capabilities today. The need
for such a book was first realized by the author when he was
engaged in a renewable energy capacity-building project
encompassing countries from Europe, the Caribbean, Africa, and the
Pacific. The book is largely non-technical in nature; it does
however contain enough mention of the science and technology to
enable readers to go further with their own investigations should
they wish to. The book covers all areas of renewable energy (RE),
starting from biomass energy and hydropower and proceeding to wind,
solar and geothermal energy before ending with an overview of ocean
energy. It begins with a simple introduction to the physical
principles of the RE technologies, followed by an enumeration of
the requirements for their successful implementation. The last two
chapters consider how the technologies are actually being
implemented today and their roles in climate change mitigation and
poverty alleviation.
Electric glow discharges (glows) can be found almost everywhere,
from atmospheric electricity to modern plasma technologies, and
have long been the object of research. The main purpose of this
book is to provide simple illustrations of the basic physical
mechanisms and principles that determine the properties of electric
glow discharges. It should enable readers to successfully
participate in scientific and technical progress.
|
You may like...
Wind Tunnels
Satoru Okamoto
Hardcover
R3,085
Discovery Miles 30 850
A - D
Thomas M. Klapoetke
Hardcover
R6,833
Discovery Miles 68 330
|