![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > General
This book highlights a novel and robust platform in the form of in-situ characterization setup for creating X-ray computed tomography (XCT)-based textile material twins. In this hybrid experimental-numerical platform, XCT images of different complex fibrous reinforcements at different levels of compaction are acquired. The images are converted into computational models for resin flow simulations. The capabilities of this hybrid framework are applied to a variety of reinforcements used in liquid composite molding processes such as 2D, 3D fabrics and dry tapes. This book is a milestone in the development of virtual manufacturing protocols using material twins of textiles, providing a step closer to the digitalization of advanced composites used in manufacturing processes for industry 4.0.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
Differential Transformation Method for Mechanical Engineering Problems focuses on applying DTM to a range of mechanical engineering applications. The authors modify traditional DTM to produce two additional methods, multi-step differential transformation method (Ms-DTM) and the hybrid differential transformation method and finite difference method (Hybrid DTM-FDM). It is then demonstrated how these can be a suitable series solution for engineering and physical problems, such as the motion of a spherical particle, nanofluid flow and heat transfer, and micropolar fluid flow and heat transfer.
This book presents concepts of theoretical physics with engineering applications. The topics are of an intense mathematical nature involving tools like probability and random processes, ordinary and partial differential equations, linear algebra and infinite-dimensional operator theory, perturbation theory, stochastic differential equations, and Riemannian geometry. These mathematical tools have been applied to study problems in mechanics, fluid dynamics, quantum mechanics and quantum field theory, nonlinear dynamical systems, general relativity, cosmology, and electrodynamics. A particularly interesting topic of research interest developed in this book is the design of quantum unitary gates of large size using the Feynman diagrammatic approach to quantum field theory. Through this book, the reader will be able to observe how basic physics can revolutionize technology and also how diverse branches of mathematical physics like large deviation theory, quantum field theory, general relativity, and electrodynamics have many common issues that provide the starting point for unifying the whole of physics, namely in the formulation of Grand Unified Theories (GUTS).
The application of nuclear physics methods is now widespread
throughout physics, chemistry, metallurgy, biology, clinical
medicine, geology, and archaeology. Accelerators, reactors, and
various instruments that have developed together with nuclear
physics have often been found to offer the basis for increasingly
productive and more sensitive analytical techniques.
This book systematically introduces readers to the fundamental physics and a broad range of applications of acoustic levitation, one of the most promising techniques for the container-free handling of small solid particles and liquid droplets. As it does away with the need for solid walls and can easily be incorporated into analysis instruments, acoustic levitation has attracted considerable research interest in many fields, from fluid physics to material science. The book offers a comprehensive overview of acoustic levitation, including the history of acoustic radiation force; the design and development of acoustic levitators; the technology's applications, ranging from drop dynamics studies to bio/chemical analysis; and the insightful perspectives that the technique provides. It also discusses the latest advances in the field, from experiments to numerical simulations. As such, the book provides readers with a clearer understanding of acoustic levitation, while also stimulating new research areas for scientists and engineers in physics, chemistry, biology, medicine and other related fields.
This book elaborates on the physical principles of polarization remote sensing. It explains the reflective characteristics of surface objects and atmosphere separately, including theory, experiment, instrument and application. In addition, it introduces how polarization remote sensing works in advanced research programs as it can be used in aviation, astronomy, disaster risk prevention and navigation fields. This book serves as a fundamental and comprehensive reference for researchers and students.
Written by the inventors and leading experts of this new field, the book results from the International Symposium on "Atomic Switch: Invention, Practical use and Future Prospects" which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (~1/10) with much lower power consumption (~1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (~1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.
This book cuts across the divisions of organic, inorganic, and physical chemistry. It describes new methods for creating -conjugated porphyrin oligomers with precisely defined sequences of zinc and copper metal cations, and how EPR spectroscopy was used to investigate the dipolar and exchange coupling between the paramagnetic copper(II) centres. Porphyrins are a group of heterocyclic macrocycle organic compounds that play an important role in our everyday life and can for example be found in blood where they form a red complex with iron (haem). Various metallic elements can be inserted into a porphyrin and changing the coordinated metal is an excellent way to influence the chemical and physical properties of these molecules. Focusing on 3 metals - zinc, magnesium and copper - the author established new methods for creating -conjugated porphyrin oligomers and lastly presents the synthesis and investigation of two novel porphyrin nanoballs. Giving the template-directed strategy the author developed for constructing these molecules, this work could provide access to other related nano-cages.
This open access book examines key aspects of international cooperation to enhance nuclear safety, security, safeguards, and nonproliferation, thereby assisting in development and maintenance of the verification regime and fostering progress toward a nuclear weapon-free world. Current challenges are discussed and attempts made to identify possible solutions and future improvements, considering scientific developments that have the potential to increase the effectiveness of implementation of international regimes, particularly in critical areas, technology foresight, and the ongoing evaluation of current capabilities.
This reference examines the tremendous benefits produced by the use of superconductivity, including the realization of a commercial fusion reactor for the generation of electricity. Providing a comprehensive coverage of superconductivity and magnet design - incorporating background information for beginners as well as research advances for specialists - this work: discusses the historical development of superconductivity and its engineering applications; explains the mechanical properties of the metal matrix composite; describes the important electromagnetic factors for the design of composite superconductors; analyzes the fabrication and optimization of various composite superconductors; and assesses the future development of high Tc oxide superconductors for engineering applicaitons.;This title is intended for: physicists; metallurgists; materials scientists; materials, electrical, mechanical, cryogenic and medical engineers; and graduate students in these disciplines.
This book is based on the lectures and contributions of the NATO Advanced Study Institute on "Nanoscience and Nanotechnology in Security and Protection Against CBRN Threats" held in Sozopol, Bulgaria, September 2019. It gives a broad overview on this topic as it combines articles addressing the preparation and characterization of different nanoscaled materials (metals, oxides, glasses, polymers, carbon-based, etc.) in the form of nanowires, nanoparticles, nanocomposites, nanodots, thin films, etc. and contributions on their applications in diverse security and safety related fields. In addition, it presents an interdisciplinary approach drawing on the Nanoscience and Nanotechnology know-how of authors from Physics, Chemistry, Engineering, Materials Science and Biology. A further plus-point of the book, which represents the knowledge of experts from over 20 countries, is the combination of longer papers introducing the background on a certain topic, and brief contributions highlighting specific applications in different security areas.
Technology has been the spark that ignited NATO's interest and commitment to scientific advancement during its history. Since its creation, the Science for Peace and Security (SPS) Programme has been instrumental to NATO's commitment to innovation, science and technological advancement. During the years, SPS has demonstrated a flexible and versatile approach to practical scientific cooperation, and has promoted knowledge-sharing, building capacity, and projected stability outside NATO territory. The priorities addressed by the SPS Programme are aligned with NATO's strategic objectives, and aim to tackle emerging security challenges that require dynamic adaptation for the prevention and mitigation of risks. By addressing priorities such as advanced technologies, hybrid threats, and counter-terrorism, the Programme deals with new, contemporary challenges. On 17-18 September 2019, the SPS Programme gathered at the KU Leuven University a wide number of researchers from a selection of on-going and recently closed SPS projects in the field of security-related advanced technologies for a "Cluster Workshop on Advanced Technologies". The workshop covered, in particular, the following scientific domains: communication systems, advanced materials, sensors and detectors, and unmanned and autonomous systems. This book provides an overview on how these projects have contributed to the development of new technologies and innovative solutions and recommendations for future actions in the NATO SPS programme.
Nano particles have created a high interest in recent years by virtue of their unusual mechanical, electrical, optical and magnetic properties and find wide applications in all fields of engineering. This edited volume aims to present the latest trends and updates in nanogenerators, thin film solar cells and green synthesis of metallic nanoparticles with a focus on nanostructured semiconductor devices. Exclusive chapter on electrical transport of nanostructure explains device physics for material properties for reduced dimensions. Additionally, the text describes the functionality of metallic nanoparticles and their application in molecular imaging and optical metamaterials. Piezoelectric nanogenerators has been touched upon from the energy perspective as well. Key Features: * Organized contents on Nanogenerators, VOC sensing, nanoelectronics, and NEMS. * Discusses eco-friendly green synthesis methods for metallic nanoparticles. * Touches upon low power nano devices (e.g. nanogenerators) for energy harvesting with quantum mechanical study. * Thin film/heterojunction based high efficiency solar cell addressed aimed at reducing global energy consumption.
This open access book examines key aspects of international cooperation to enhance nuclear safety, security, safeguards, and nonproliferation, thereby assisting in development and maintenance of the verification regime and fostering progress toward a nuclear weapon-free world. Current challenges are discussed and attempts made to identify possible solutions and future improvements, considering scientific developments that have the potential to increase the effectiveness of implementation of international regimes, particularly in critical areas, technology foresight, and the ongoing evaluation of current capabilities.
This book highlights how the properties and structure of materials are affected by dynamic high pressures generated by explosions, projectile impacts, laser compression, electric discharge or ball milling. Starting with the basics of shock-wave physics and an outline of experimental techniques, it then surveys dynamic compressibility and equations of state of various substances, phase transitions and syntheses of novel compounds under shock. It covers various industrial applications including hardening of metals and grinding (fragmentation) of solids, saturation of solids with defects for use as catalysts, production of superhard materials (synthetic diamond, BN (boron nitride)) and nanomaterials, especially nanodiamond, and discusses state-of-the-art techniques such as combining dynamic and static compression to obtain monolithic materials.
This book provides thorough coverage of the most important building physics phenomena: heat transfer, moisture, sound/acoustics, and illumination. Since the book is primarily aimed at engineers, it addresses professional issues with due pragmatism, and by including many practical examples and related ISO standards. Nevertheless, in order to guarantee full comprehension, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear way. This is achieved with the aid of more than 100 figures and consistent cross-referencing of formulas and ideas. In addition, interrelationships between the different building physics phenomena are elucidated in a way that will enable readers to develop performance specifications that inform the design process. The book will primarily appeal to students of civil engineering and architecture, as well as to all practitioners in these areas who wish to broaden their fundamental understanding of topics in building physics.
This book elaborates on the acceleration of charged particles with ultrafast terahertz electromagnetic radiation. It paves the way for new, and improves many aspects of current, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser. The author has developed new sources of terahertz radiation with attractive properties for accelerator-based applications. These include a radially biased large-area photoconductive antenna (PCA) that provided the largest longitudinally polarised terahertz electric field component ever measured from a PCA. This radially biased PCA was used in conjunction with an energy recovery linear accelerator for electron acceleration experiments at the Daresbury Laboratory. To achieve even higher longitudinally polarised terahertz electric field strengths, and to be able to temporally tune the terahertz radiation, the author investigated generation within non-linear optical crystals. He developed a novel generation scheme employing a matched pair of polarity inverted magnesium-oxide doped stoichiometric lithium niobate crystals, which made it possible to generate longitudinally polarised single-cycle terahertz radiation with an electric field amplitude an order of magnitude larger than existing sources.
This book provides a detailed yet comprehensive presentation of the theory of periodic conjugate heat transfer. It contains an analytical approach to the effects of thermophysical and geometrical properties of a solid body on the experimentally determined heat transfer coefficient. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation.This third and extended edition covers Wall's thermal effect on Landau stability, gas bubbles pulsations in fluids, and also the interplay between periodic conjugate heat transfer and non-Fourier heat conduction. The target audience primarily comprises research experts in the field of thermodynamics and fluid dynamics, but the book may also be beneficial for graduate students in engineering.
This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferometer. From this foundation, it delves into the underlying relationships of interferometry, sets forth the coordinate systems and parameters to describe synthesis imaging, and examines configurations of antennas for multielement synthesis arrays. Various aspects of the design and response of receiving systems are discussed, as well as the special requirements of very-long-baseline interferometry (VLBI), image reconstruction, and recent developments in image enhancement techniques and astrometric observations. Also discussed are propagation effects in the media between the source and the observer, and radio interference, factors that limit performance. Related techniques are introduced, including intensity interferometry, optical interferometry, lunar occultations, tracking of satellites in Earth orbit, interferometry for remote Earth sensing, and holographic measurements of antenna surfaces. This book will benefit anyone who is interested in radio interferometry techniques for astronomy, astrometry, geodesy, or electrical engineering.
'Einstein did not attempt to explain the constancy of the velocity of light: he assumed it and derived his theories accordingly. But we have explained it.' -- from Chapter 8 of Space and Counterspace Many people feel alienated by modern science and its impersonal view of our world, based on the concept of the 'detached observer'. Our human intuitions suggest that we need a broader-based science which can encompass phenomena currently excluded, such as human consciousness, qualities and values. In this groundbreaking book, Nick Thomas presents a wider view of science using the theory of 'counterspace'. Counterspace exists alongside space as we know it, and was first proposed by Rudolf Steiner, and developed by the Cambridge mathematician George Adams. Through its startling lens, key aspects of our world -- such as gravity, time, light and colour, as well as the stars, the solar system, and the classical elements -- can be viewed and understood in dynamically new ways. Thomas's work and ideas are on the cusp of a true revolution in the way modern scientific method can penetrate even deeper into the mysteries of our natural world.
This book describes computational methods used in quantum dynamics with emphasis on small quantum systems. Computational physics is a fundamental physical discipline at the forefront of physical research. Thus it is an indisputable fact that computational physics form part of the essential landscape of physical science and education. In the present state of scientific knowledge the importance of quantum dynamics is commonplace. Computational quantum dynamics involves the use of computer calculations and simulations to solve quantum physical problems. Following a brief introduction to quantum dynamics the book revisits approximation techniques based on perturbational theory and variationalmethods. This discussion includes Hartree-Fock and density functional theory and quantum Monte Carlo methods. The next chapter presents the concepts of finite differences. Central in this chapter is the discretization in time and space. Later chapters concentrate on discrete variable techniques based on orthogonal polynomials, finite element and B-splinemethods for both time-independent and time-dependent problems and the combination of different computational techniques. The final chapter contains a list of useful sources for computational software and program codes. This book is primarily aimed at advanced students and graduates and researchers in theoretical and computational physics or chemistry and bridges the gap between quantum textbooks and computational research. Although not essential, the reader should have a basic background in quantum physics and some knowledge of numerical analysis would be helpful in reading this book.
Standard approaches to understanding swarms rely on inspiration from biology and are generally covered by the term "biomimetics". This book focuses on a different, complementary inspiration, namely physics. The editors have introduced the term 'physicomimetics' to refer to physics-based swarm approaches, which offer two advantages. First, they capture the notion that "nature is lazy', meaning that physics-based systems always perform the minimal amount of work necessary, which is an especially important advantage in swarm robotics. Second, physics is the most predictive science, and can reduce complex systems to simple concepts and equations that codify emergent behavior and help us to design and understand swarms. The editors consolidated over a decade of work on swarm intelligence and swarm robotics, organizing the book into 19 chapters as follows. Part I introduces the concept of swarms and offers the reader a physics tutorial; Part II deals with applications of physicomimetics, in order of increased complexity; Part III examines the hardware requirements of the presented algorithms and demonstrates real robot implementations; Part IV demonstrates how the theory can be used to design swarms from first principles and provides a novel algorithm that handles changing environments; finally, Part V shows that physicomimetics can be used for function optimization, moving the reader from issues of swarm robotics to swarm intelligence. The text is supported with a downloadable package containing simulation code and videos of working robots. This book is suitable for talented high school and undergraduate students, as well as researchers and graduate students in the areas of artificial intelligence and robotics.
Fullerenes became a new member of carbon allotropes in addition to diamond and graphite after the discovery of C60 (carbon 60) by Kroto et al. in 1985. The model of C60 was first proposed by Osawa in 1970. C60 is a hollow spherical molecule composed of 60 carbon atoms that contains 12 five-membered rings and 20 six-membered rings and has the same structure as a soccer ball. In 2001, C60 fullerene nanowhiskers (FNWs), which are single-crystal nanowhiskers solely composed of C60 molecules, were discovered in a colloidal solution of lead zirconate titanate (PZT) with added C60. This book focuses on the synthesis of FNWs, fullerene nanotubes, and fullerene nanosheets and describes the structural, mechanical, semiconducting, and thermal properties, as well as bio-related and solar applications of FNWs and related fullerene nanomaterials. |
![]() ![]() You may like...
Advances in Metal Forming - Expert…
Rahulkumar Shivajirao Hingole
Hardcover
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,935
Discovery Miles 29 350
Fiber Materials - Design, Fabrication…
Jeenat Aslam, Chandrabhan Verma
Hardcover
R5,173
Discovery Miles 51 730
|