![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > General
For over half a century, an increasing number of satellites have fragmented in orbit, creating a large amount of hazardous orbital debris which threaten the safety of useful functioning satellites and space missions. This book discusses the theory behind these fragmentations followed by studies of actual cases.The book begins with a survey of satellite fragmentations in orbit and the consequent formation of orbital debris in chronological order. Next, the fundamental physical processes underlying satellite fragmentations are outlined and the methods of analyzing satellite fragmentations presented. The rest of the book presents analyses of the major satellite fragmentation events including accidental and intentional breakups, those due to explosions and collisions, as well as those belonging to the unknown category.
Explaining the chromatic methodology for the intelligent monitoring of complex systems, Chromatic Monitoring of Complex Conditions demonstrates that chromatic processing is analogous to human vision yet also extends into a wide range of nonoptical domains. Taking a practical approach that utilizes many examples and graphs, the book presents the origin and methodology of chromaticity, before delving into the various applications of chromatic methods. It first describes characteristics of chromatic systems and chromatic processing algorithms, such as H, S, V transformation and basic x, y, z algorithms. The book then discusses the areas in which chromatic monitoring can be deployed, including electrical plasmas, industrial liquids, broadband interferometry and polarimetry, biological tissues and fluids, the environment, and acoustical and vibration signals. With contributions from international authorities in the field, this volume shows how chromatic analysis is useful for investigating diverse complex systems and for processing large amounts of information about system behavior, from direct physical parameters to holistic system overviews. By covering the broad capabilities of the methodology, it provides the basis for adapting chromatic techniques in future work.
This book is devoted to the investigations of non-stationary electromagnetic processes. The investigations are undertaken analytically mainly using the Volterra integral equations approach. The book contains a systematic statement of this approach for the investigations of electrodynamics phenomena in the time domain and new results and applications in microwave techniques and photonics. Particular consideration is given to electromagnetic transients in time-varying media and their potential applications. The approach is formulated and electromagnetic phenomena are investigated in detail for a hollow metal waveguide, which contains moving dielectric or plasma-bounded medium, and dielectric waveguides with time-varying medium inside a core.
Statistical physics is not a difficult subject, and I trust that this will not be found a difficult book. It contains much that a number of generations of Lancaster students have studied with me, as part of their physics honours degree work. The lecture course was of twenty hours duration, and I have added comparatively little to the lecture syllabus. A pre requisite is that the reader should have a working knowledge of basic thermal physics (i.e. the laws of thermodynamics and their application to simple substances). The book Thermal Physics by Colin Finn in this series forms an ideal introduc tion. Statistical physics has a thousand and one different ways of approaching the same basic results. I have chosen a rather down-to-earth and unsophisticated approach, without I hope totally obscuring the considerable interest of the fun damentals. This enables applications to be introduced at an early stage in the book. As a low-temperature physicist, I have always found a particular interest in statistical physics, and especially in how the absolute zero is approached. I should not, therefore, apologize for the low-temperature bias in the topics which I have selected from the many possibilities."
This book summarizes the results of studies of molecules and molecular complexes using techniques based on surface plasmon resonance (SPR) in a novel scientific direction called molecular plasmonics. It presents the current state of investigations in the field of molecular plasmonics and discusses its two main physical phenomena: surface plasmon-polariton resonance (SPPR) and localized SPR (LSPR). Among the mathematical methods for the calculation of plasmonic systems response, the book emphasizes models based on the transfer-matrix method, Green function formalism, Mie scattering theory, and numerical methods. It considers the possibilities of the SPPR technique for registering conformational changes, surface plasmon-mediated photopolymerization, electrochemical processes, as well as reversible optoelectronic and physicochemical properties during investigation of molecular systems. It describes applications of the LSPR method, including creation of metamaterials, surface-enhanced fluorescence, and bio- and chemosensing using noble metal nanoparticles in colloidal, array, and composite polymeric film formats. It also highlights the development and applications of plasmonic nanochips.
Introduced nearly three decades ago as a variable resolution alternative to the Fourier transform, a wavelet is a short oscillatory waveform for analysis of transients. The discrete wavelet transform has remarkable multi-resolution and energy-compaction properties. Amir-Homayoon Najmi's introduction to wavelet theory explains this mathematical concept clearly and succinctly. Wavelets are used in processing digital signals and imagery from myriad sources. They form the backbone of the JPEG2000 compression standard, and the Federal Bureau of Investigation uses biorthogonal wavelets to compress and store its vast database of fingerprints. Najmi provides the mathematics that demonstrate how wavelets work, describes how to construct them, and discusses their importance as a tool to investigate and process signals and imagery. He reviews key concepts such as frames, localizing transforms, orthogonal and biorthogonal bases, and multi-resolution. His examples include the Haar, the Shannon, and the Daubechies families of orthogonal and biorthogonal wavelets. Our capacity and need for collecting and transmitting digital data is increasing at an astonishing rate. So too is the importance of wavelets to anyone working with and analyzing digital data. Najmi's primer will be an indispensable resource for those in computer science, the physical sciences, applied mathematics, and engineering who wish to obtain an in-depth understanding and working knowledge of this fascinating and evolving field.
Pulsed laser-based techniques for depositing and processing materials are an important area of modern experimental and theoretical scientific research and development, with promising, challenging opportunities in the fields of nanofabrication and nanostructuring. Understanding the interplay between deposition/processing conditions, laser parameters, as well as material properties and dimensionality is demanding for improved fundamental knowledge and novel applications. This book introduces and discusses the basic principles of pulsed laser-matter interaction, with a focus on its peculiarities and perspectives compared to other conventional techniques and state-of-the-art applications. The book starts with an overview of the growth topics, followed by a discussion of laser-matter interaction depending on laser pulse duration, background conditions, materials, and combination of materials and structures. The information outlines the foundation to introduce examples of laser nanostructuring/processing of materials, pointing out the importance of pulsed laser-based technologies in modern (nano)science. With respect to similar texts and monographs, the book offers a comprehensive review including bottom-up and top-down laser-induced processes for nanoparticles and nanomicrostructure generation. Theoretical models are discussed by correlation with advanced experimental protocols in order to account for the fundamentals and underline physical mechanisms of laser-matter interaction. Reputed, internationally recognized experts in the field have contributed to this book. In particular, this book is suitable for a reader (graduate students as well as postgraduates and more generally researchers) new to the subject of pulsed laser ablation in order to gain physical insight into and advanced knowledge of mechanisms and processes involved in any deposition/processing experiment based on pulsed laser-matter interaction. Since knowledge in the field is given step by step comprehensively, this book serves as a valid introduction to the field as well as a foundation for further specific readings.
Key features: Organizes a difficult subject into short and clearly written sections. Can be used alongside any introductory physics textbook. Presents clear examples for every problem type discussed in the textbook.
Impedance Spectroscopy is a powerful measurement method used in many application fields such as electrochemistry, material science, biology and medicine, semiconductor industry and sensors. Using the complex impedance at various frequencies increases the informational basis that can be gained during a measurement. It helps to separate different effects that contribute to a measurement and, together with advanced mathematical methods, non-accessible quantities can be calculated. This book is the fifth in the series Lecture Notes on Impedance Spectroscopy (LNIS). The series covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases scientific contributions as extended chapters including detailed information about recent scientific research results. This book is including proceedings of the International Workshop on Impedance Spectroscopy (IWIS) which has been launched already in June 2008 with the aim to serve as a platform for specialists in this field. Since 2009 it became an international workshop gaining increasingly more acceptance in both scientific and industrial fields. It is organized regularly one time per year. This book is interesting for graduated students, engineers, researchers and specialists dealing with impedance spectroscopy. It includes fundamentals of impedance spectroscopy as well as specific aspects form manifold applications in various fields.
The book on The General Theory of Electrical Machines, by B. Adkins, which was published in 1957, has been well received, as a manual containing the theories on which practical methods of calculating machine performance can be based, and as a text-book for advanced students. Since 1957, many important developments have taken place in the practical application of electrical machine theory. The most important single factor in the development has been the increasing availability of the digital computer, which was only beginning to be used in the solution of machine and power system problems in 1957. Since most of the recent development, particularly that with which the authors have been concerned, has related to a. c. machines, the present book, which is in other respects an up-to-date version of the earlier book, deals primarily with a. c. machines. The second chapter on the primitive machine does deal to some extent with the d. c. machine, because the cross-field d. c. generator servesas an introduction to the two-axis theory and can be used to provide a simple explanation of some of the mathematical methods. The equations also apply directly to a. c. commutator machines. The use of the word 'general' in the title has been criticized. It was never intended to imply that the treatment was comprehen sive in the sense that every possible type of machine and problem was dealt with."
Sensors and Their Applications XII discusses novel research in the areas of sensors and transducers and provides insight into new and topical applications of this technology. It covers the underlying physics, fabrication technologies, and commercial applications of sensors. Some of the topics discussed include optical sensing, sensing materials, nondestructive monitoring, imaging sensors, system networks, and water quality monitoring.
This book explores new principles of Self-Initiating Volume Discharge for creating high-energy non-chain HF(DF) lasers, as well as the creation of highly efficient lasers with output energy and radiation power in the spectral region of 2.6-5 m. Today, sources of high-power lasing in this spectral region are in demand in various fields of science and technology including remote sensing of the atmosphere, medicine, biological imaging, precision machining and other special applications. These applications require efficient laser sources with high pulse energy, pulsed and average power, which makes the development of physical fundamentals of high-power laser creation and laser complexes of crucial importance. High-Energy Ecologically Safe HF/DF Lasers: Physics of Self-Initiated Volume Discharge-Based HF/DF Lasers examines the conditions of formation of SSVD, gas composition and the mode of energy input into the gas on the efficiency and radiation energy of non-chain HF(DF) lasers. Key Features: Shares research results on SSVD in mixtures of non-chain HF(DF) lasers Studies the stability and dynamics of the development of SSVD Discusses the effect of the gas composition and geometry of the discharge gap (DG) on its characteristics Proposes recommendations for gas composition and for the method of obtaining SSVD in non-chain HF(DF) lasers Develops simple and reliable wide-aperture non-chain HF(DF) lasers and investigates their characteristics Investigates the possibilities of expanding the lasing spectrum of non-chain HF(DF) lasers
The need has arisen for a comprehensive handbook for engineers faced with problems of radiation shielding design. Although there are several excellent books on shielding, they either do not give enough consideration to the many practical design problems, or are limited to special aspects of the subject. Recognizing the universal need, the International Atomic Energy Agency decided to sponsor the publication ofthe present Engineering Compendium on Radiation Shield ing. At the first editorial discussions it was agreed that, if such a book were to be undertaken, it would be appropriate not only to create a useful design tool for the practising engineer but also to include well-referenced basic data for the research worker. Although trying to keep the book down to a reasonable size, the editors have aimed at a complete presentation of the subject, covering and linking both the tech nology and the science of shielding. Efforts to make terms and definitions consistent throughout have been only partially successful, owing to the continuing development of new ideas. However, inconsisten cies that could not be eliminated are identified whenever possible."
Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging. After a historical review of progress in holography, the book:
Written by leaders in dynamic holography, this handbook provides complete coverage of real-time colour holographic processes, including applications. The book covers not only the optics and theory behind such holographic systems, but also laser technologies, recording devices, data acquisition and processing techniques, materials for reproduction, and current and developing applications.
This book summarizes the fundamental and established methods for the synthesis of nanoparticles, providing readers with an organized and comprehensive insight into the field of nanoparticle technology. In addition to exploring the characterization and applications of nanoparticles, it also focuses on the recently explored corona discharge micromachining - Electrical Discharge Micromachining (EDMM) - method to synthesize inorganic nanoparticles. In the synthesis of nanoparticles, organic materials often play an indispensable role, such as providing stabilizers in the form of capping agents. This book will be of interest to advanced undergraduate and graduate students studying physics and engineering, as well as professionals and academics looking for an introduction to the nature and foundations of nanoparticle synthesis. Features: Provides diagnostic tools for the characterization of nanoparticles Explores the cutting-edge EDMM method for the synthesis and characterization of nanoparticles Discusses possible methods to overcome agglomeration of nanoparticles and achieve stable dispersion, in addition to examining the application suitability of synthesized nanoparticles
This book provides a survey of the latest research and developments in plasma technology. In an easy and comprehensive manner, it explores what plasma is and the technologies utilized to produce plasma. It then investigates the main applications and their benefits. Different from other books on the topic that focus on specific aspects of plasma technology, the intention is to provide an introduction to all aspects related to plasma technologies. This book will be an ideal resource for graduate students studying plasma technologies, in addition to researchers in physics, engineering, and materials science. Features Accessible and easy to understand Provides simple yet exhaustive explanations of the foundations Explores the latest technologies and is filled with practical applications and case studies
|
You may like...
Magmas Under Pressure - Advances in…
Yoshio Kono, Chrystele Sanloup
Paperback
R3,057
Discovery Miles 30 570
Petrophysical Characterization and…
Jianchao Cai, Xiangyun Hu
Paperback
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
China Satellite Navigation Conference…
Jiadong Sun, Jingnan Liu, …
Hardcover
R5,271
Discovery Miles 52 710
|