![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
1. G. Engelhardt, H. Koller, Stuttgart, FRG: 29Si NMR of Inorganic Solids 2. H. Pfeifer, Leizpig, FRG: NMR of Solid Surfaces 3. A. Sebald, Bayreuth, FRG: MAS and CP/MAS NMR of Less Common Spin-1/2 Nuclei 4. C. J{ger, Mainz, FRG: Satellite Transition Spectroscopy of Quadrupolar Nuclei 5. D. Brinkmann, M. Mali, Z}rich, CH: NMR-NQR Studies of High-Temperature Superconductors
Celebrating Volume 100: Thirty years ago Springer-Verlag together with a distinguished Board of Editors started the series "Structure and Bonding." Initially the series was set up to publish reviews from different fields of modern inorganic chemistry, chemical physics and biochemistry, where the general subject of chemical bonding involves a metal and a small number of associated atoms. Three years ago the aims of the series was refined to span the entire periodic table and address structure and bonding issues wherever they may be relevant. Not only the traditional areas of chemical bonding will be dealt with but also nanostructres, molecular electronics, supramolecular structure, surfaces and clusters. With these aims in mind it is noteworthy that Volume 100 effectively reinforces and illustrates these ideals and is titled "Pi-Electron Magnetism" "from Molecules to Magnetic Materials."
Although the research actIvItIes of dyestuff chemists worldwide have been influenced to a great extent, in recent years, by the need to respond to a variety of environmental issues associated with the manufacture and application of synthetic dyes and pigments, a significant level of targeted research continues to be devoted to new chemistry aimed at enhancing the technical properties of dyes in commerce. This book is a presentation of various aspects of basic research conducted during the past decade but not reported in the recent review literature. The coverage herein is unique in that it emphasizes systematic approaches commonly utilized in the design and synthesis of dyes and pigments and the required intermediates. While it is well known that certain transition metals are important in the synthesis of technically viable metallized dyes for polyamide and protein fibers, these metals are demonstrated in Chapter 1 also to be effective agents in the regiospecific placement of substituents into azo compounds. The scope and limitations of this chemistry are presented. In other synthetic work, a description of the different processes employed to produce the major families of reactive dyes is presented. In Chapter 4, special attention is given to reactive dyes containing more than one reactive group, and to the more recent developments in the field. The two chapters which follow provide a review of the recent literature pertaining to novel chromophores and dyes for the D2T2 process, respectively.
This book represents the proceedings of the First International Conference on Frontiers of Polymer Research held in New Delhi, India during January 20-25, 1991. Polymers have usually been perceived as substances to be used in insulations, coatings, fabrics, and structural materials. Defying this classical view, polymers are emerging as a new class of materials with potential applications in many new technologies. They also offer challenging opportunities for fundamental research. Recognizing a tremendous growth in world wide interest in polymer research and technology, a truly global "1st International Conference on Frontiers of Polymer Research" was organized by P. N. Prasad (SUNY at Buffalo), F. E. Karasz (University of Massachusetts) and J. K. Nigam (Shriram Institute for Industrial Research, India). The 225 participants represented 25 countries and a wide variety of academic, industrial and government groups. The conference was inaugurated by the Prime Minister of India, Mr. Chandra Shekhar and had a high level media coverage. The focus of the conference was on three frontier areas of polymer research: (i) Polymers for photonics, where nonlinear optical properties of polymers show great promise, (ii) Polymers for electronics, where new conduction mechanisms and photophysics have generated considerable enthusiasm and (iii) High performance polymers as new advanced polymers have exhibited exceptionally high mechanical strength coupled with light weight.
Intensive research on zeolites, during the past thirty years, has resulted in a deep understanding of their chemistry and in a true zeolite science, including synthesis, structure, chemical and physical properties, and catalysis. These studies are the basis for the development and growth of several industrial processes applying zeolites for selective sorption, separation, and catalysis. In 1983, a NATO Advanced Study Institute was organized in Alcabideche (portugal) to establish the State-of-the-Art in Zeolite Science and Technology and to contribute to a better understanding of the structural properties of zeolites, the configurational constraints they may exert, and their effects in adsorption, diffusion, and catalysis. Since then, zeolite science has witnessed an almost exponential growth in published papers and patents, dealing with both fundamentals issues and original applications. The proposal of new procedures for zeolite synthesis, the development of novel and sophisticated physical techniques for zeolite characterization, the discovery of new zeolitic and related microporous materials, progresses in quantum chemistry and molecular modeling of zeolites, and the application of zeolites as catalysts for organic reactions have prompted increasing interest among the scientific community. An important and harmonious interaction between various domains of Physics, Chemistry, and Engineering resulted therefrom.
Environmental pollution is one of the main problems to confront humanity, with the heavy metals occupying a leading role among the most pernicious pollutants. The metals cause cancer and other sicknesses. Their cytotoxic, mutagenic and carcinogenic potentials are not fully understood, and any thorough investigation demands the combined efforts of scientists drawn from many different disciplines. But the effects of heavy metals are not all negative: some, like cis-DDP, and some ruthenium and tin complexes, have antitumour activity. The idea underlying the present work is therefore to present a multidisciplinary perspective on heavy metals in the environment, affording a better understanding of their action on human organisms and health, aiming to make them less polluting and more environmentally friendly.
Polymer science is a technology-driven science. More often than not, technological breakthroughs opened the gates to rapid fundamental and theoretical advances, dramatically broadening the understanding of experimental observations, and expanding the science itself. Some of the breakthroughs involved the creation of new materials. Among these one may enumerate the vulcanization of natural rubber, the derivatization of cellulose, the giant advances right before and during World War II in the preparation and characterization of synthetic elastomers and semi crystalline polymers such as polyesters and polyamides, the subsequent creation of aromatic high-temperature resistant amorphous and semi-crystal line polymers, and the more recent development of liquid-crystalline polymers mostly with n~in-chain mesogenicity. other breakthroughs involve the development of powerful characterization techniques. Among the recent ones, the photon correlation spectroscopy owes its success to the advent of laser technology, small angle neutron scattering evolved from n~clear reactors technology, and modern solid-state nuclear magnetic resonance spectroscopy exists because of advances in superconductivity. The growing need for high modulus, high-temperature resistant polymers is opening at present a new technology, that of more or less rigid networks. The use of such networks is rapidly growing in applications where they are used as such or where they serve as matrices for fibers or other load bearing elements. The rigid networks are largely aromatic. Many of them are prepared from multifunctional wholly or almost-wholly aromatic kernels, while others contain large amount of stiff difunctional residus leading to the presence of many main-chain "liquid-crystalline" segments in the "infinite" network.
Despite the significant progress, which has been made in developing of ceramic materials desired for engineering applications, their mass production is still not on expected level. Among the key factors hindering higher exploitation of these materials the problems in processing were identified. The processing comprises powder production, mixing techniques, forming, and sintering. All of them are equally important and all of them can introduce defects into the material. Besides improvement in processing, the properties of ceramic materials can be considerably improved by the creation of composites. Composites formed at micro or macro level are able to form more flaw-tolerant material. Considerable research activities, working on above mentioned phenomena are in progress at industrial laboratories as well as other research centres. This volume presents the contributions to the Advanced Research Workshop "Engineering Ceramics '96" with 65 participants from 21 countries held on 12th - 15th May 1996 at Smolenice Castle, Slovakia, the conference site of Slovak Academy of Sciences. The book covers research activities on engineering ceramic materials and gives an overview with respect to recent developments.
The series of Conferences on the Spectroscopy of Biological Molecules aims to stimulate research and development in this area of Science. The relationship between the structure and the biological activity of such materials as proteins, lipids, and nucleic acids is fundamental. The 5th European Conference on the Spectroscopy of Biological Molecules (ECSBM) is held at the Hotel Poseidon Club, Loutraki, Greece, on 5-10 September 1993. The scientific contents are remained the same as in the past conferences. Emphasis is given to vibrational spectroscopy, mainly infrared and Raman applied to the study of structure and dynamics of proteins, nucleic acids, porphyrins, carbohydrates, membranes, etc. Most of the contributions describe molecular dynamics and excitation processes, in particular the electronic-vibrational excitations, which are studied by Fr-Raman, Fourier Transform Infrared (Fr-IR) coupled often with microscopy and chromatography. Contributions also include Fr-Raman and FT-IR instrumentation and new developments in this area, and applications in Biology and Medicine. Furthermore, there is a plenary lecture in Mass Spectrometry and its applications in biomedical analysis, and a session devoted to Nuclear Magnetic Resonance (NMR) and its application in the study of biological molecules. Several contributions are devoted to other methods, such as CD, optical absorption, fluorescence and molecular graphics simulations. This volume of ECSBM contains shon articles by the invited and contributed lectures as well as from the Poster presentations from many European and non-European countries.
Modern approaches to the theoretical computation and experimental determination of NMR shielding tensors are described in twenty-nine papers based on lectures presented at the NATO ARW. All of the most popular computational methods are reviewed and recent progress is described in their application to chemical, biochemical, geochemical and materials science problems. Experimental studies on NMR shieldings in gases, liquids and solids are also included, with special emphasis placed upon the relationship between NMR shielding and geometric structure and upon tests of the accuracy of the various computational methods. Qualitative MO schemes and semiempirical approaches are also considered in light of the computational results. This is a valuable book for anyone interested in how the NMR shielding tensor can be used to determine the geometric and electronic structures of molecules and solids. (abstract) Modern methods for computing and measuring nuclear magnetic resonance shielding tensors are described in papers by a great number of leaders in the field. The most popular methods for quantum mechanically calculating NMR shielding tensors are reviewed and many applications of these methods are described to problems in chemistry, biochemistry, geochemistry and materials science. The focus of the papers is on the relationship of the NMR shielding tensor to the geometric and electronic structure of molecules or solids.
of Polymer Chemistry, Inc. of the American Chemical Society held its The Division 15th Biennial Polymer Symposium on the topic, "Advances in New Materials," November 17-21, 1990, at the Pier 66 Resort and Marina in Ft. Lauderdale, Florida. A three and one half day program was presented by recognized leaders in major areas of new polymeric materials. The topics of the Biennial Symposium included new high performance polymers, polymers for electronic applications, electrically conducting polymers, nonlinear optics, new polymer systems, and polymers derived from biological media. These are the subject areas of this volume of "Contemporary Topics in Polymer Science." The intent of the Symposium was to focus on recent advances in polymeric materials. The technical sessions were complemented by an initial poster session which augmented the various technical sessions. A particular highlight of the meeting was the presentation to Professor Michael Szwarc of the 1990 Division of Polymer Chemistry Award by Dr. J. L. Benham, Chairman of the T Aymer Division. During his Award address, Professor Szwarc described how he had become a polymer chemist and later developed "living polymers." Without a doubt, Professor Szwarc has made a profound contribution to the polymer field, which has yielded many new forms of living polymerization."
An overview of modern organometallic thermochemistry, made by some of the most active scientists in the area, is offered in this book. The contents correspond to the seventeen lectures delivered at the NATO ASI Energetics of Organometallic Species (Curia, Portugal, September 1991), plus three other invited contributions from participants of that summer school. These papers reflect a variety of research interests, and discuss results obtained with several techniques. It is therefore considered appropriate to add a few preliminary words, attempting to bring some unity out of that diversity. In the first three chapters, results obtained by classical calorimetric methods are described. Modern organometallic thermochemistry started in Manchester, with Henry Skinner, and his pioneering work is briefly surveyed in the first chapter. The historical perspective is followed by a discussion of a very actual issue: the trends of stepwise bond dissociation enthalpies. Geoff Pilcher, another Manchester thermochemist, makes, in chapter 2, a comprehensive and authoritative survey of problems found in the most classical of thermochemical techniques - combustion calorimetr- applied to organometallic compounds. Finally, results from another classical technique, reaction-solution calorimetry, are reviewed in the third chapter, by Tobin Marks and coworkers. More than anybody else, Tobin Marks has used thermochemical values to define synthetic strategies for organometallic compounds, thus indicating an application of thermochemical data of which too little use has been made so far.
A summary of all the most important aspects of supramolecular science, from molecular recognition in chemical and biological systems to supramolecular devices, materials and catalysis. The 17 chapters cover calixarenes, catenanes, cavitands, cholophanes, dendrimers, membranes and self-assembly systems, molecular modelling, molecular level devices, organic materials, peptides and protein surfaces, recognition of carbohydrates, rotaxanes, supramolecular catalysis. A forward-looking chapter written by J.-M. Lehn indicated the future prospects for the entire field. Audience: Ph.D. students and young researchers in chemistry, physics and biology.
The discovery of the antitumour activity of cisplatin in 1965 and its subsequent introduction into clinical trials in 1971 was the catalyst for a major international research effort investigating the potential of metal compounds in cancer therapy. Cisplatin now occupies an important place in the armamentarium of the oncologist due to its effectiveness in the treatment of testicular cancer. A second generation analogue, carbo platin, offers reduced toxicity together with therapeutic activity, which gives it a place in the front-line therapy of genitourinary cancers. These and other successes have encouraged the search for novel metal-based drugs for cancer therapy. Research has shown that metal compounds have potential for activity not only as cytotoxic antitumour agents, but also in areas such as adjuvant therapy, diagnosis and immunotherapy. The aim of this book is to review and describe the major achievements and developments arising from this international research effort. The contributing authors come from labora tories throughout Europe and America and represent the many disci plines characteristic of this research, such as clinical research, pharmacology, tumour biology and inorganic medicinal chemistry."
The scope of this paper is to recall fundamental notions of the molecular spectroscopy and dynamics, necessary for discussion of photophysical and photochemical processes in condensed phases. We will thus treat in a more detailed way the specific features which are important for molecular systems strongly interacting with their environment. Other aspects such as the time evolution of isolated molecules, single-level excitation and state-to-state chemistry, important for the gas-phase photophysics are omitted. We start (Sec.2) with a brief description of radiative processes (light absorption and emission) in molecules. In the quantum-mechanical treatment of this problem, the appropriate basis is that of so-called zero-order states, corresponding to the traditional scheme of electronic states (singlets, doublets, triplets etc.) and vibrational levels belonging to each state. The important point will be deduction of selection rules for most radiative transitions. At this stage all molecular states are considered as stationary states. In order to treat the breakdown of simple selection rules and non-radiative transitions between individual molecular states, it is necessary to take into account the mechanisms coupling the zero-order states (Sec.3). We will first focus on intramolecular coupling effects and then discuss the solvent effects on intramolecular relaxation processes. The problem of the non-radiative transfer of the electronic energy between different molecules - closely related to that of the energy dissipation within a single molecule will be treated in Sec.4.
There are numerous criteria for measuring the growth and development of branches of chemistry. This valuable book illustrates a particular aspect of the growth of organosilicon chemistry. The extent of this field has developed so greatly in recent years that it now is desirable to reclassify parts to bring together hitherto frag mented and relatively disparate sections. This has been accomplished by the presently available large units which have been deSignated as "organosilicon heterocompounds. " Simplified expressions of such classification are structural units of the general type C - Si - heteroelement and heteroelement-C - Si, in which there are attached to the organosilicon moiety elements such as oxygen, nitrogen, metals, etc. This arrangement per mits the correlation of extensive material, which will be invalu able to chemists in many areas, both in and out of organosi- con chemistry. Because of the wealth of information, the authors are currently engaged in the preparation of companion volumes arranged on this general principle. The scope is broad, and includes material which will prove highly interesting and useful to those in academic, industrial, and governmental circles. There is not only a wide coverage of the literature generally, but the listings of patent references and of general reviews and books are among the most complete so far presented."
''A grand compilation...Well-bound, well-printed....It is sure that this pioneering book will help growing interest of the separation scientists in aqueous biphasic systems and broaden the scope of the field.'' --- Indian Chemical Society, 1998
A humoristic view of the physics of soft matter, which nevertheless has a ring of truth to it, is that it is an ill-defined subject which deals with ill-condensed matter by ill-defined methods. Although, since the Nobel prize was awarded to Pierre-Gilles de Gennes, this subject can be no longer shrugged-away as "sludge physics" by the physics community, it is still not viewed universally as "main stream" physics. While, at first glance, this may be considered as another example of inertia, a case of the "establishment" against the "newcomer", the roots of this prejudice are much deeper and can be traced back to Roger Bacon's conception about the objectivity of science. All of us would agree with the weaker form of this idea which simply says that the final results of our work should be phrased in an observer-independent way and be communicable to anybody who made the effort to learn this language. There exists, however, a stronger form of this idea according to which the above criteria of "objectivity" and "communicability" apply also to the process of scientific inquiry. The fact that major progress in the physics of soft matter was made in apparent violation of this approach, by applying intuition to problems which appeared to defy rigorous analysis, may explain why many physicists feel somewhat ill-at-ease with this subject.
The analogy between the chemistry of molecular transition metal clusters and the processes of chemisorption and catalysis at metal surfaces (the Cluster Surface analogy) has for a number of years provided an interplay between experimental and theoretical inorganic and physical chemists. This collaborative approach has born fruit in the use of well defined modes of metal-ligand bonding in discrete molecular clusters, models for metal-ligand binding on surfaces. Some of the key topics discussed in The Synergy between Dynamics and Reactivity at Clusters and Surfaces are: (1) Mechanisms of the fluxional behaviour in clusters in the liquid phase and the connections with diffusion processes on extended surfaces. The role of metal-metal bond breaking in diffusion. (2) Analogies in the structure of chemisorbed species and related ligands on metallic clusters. (3) Analogies between benzene surface chemistry on extended metal surfaces and on metal surfaces in molecular cluster compounds with particular reference to structural distortions. (4) The role of mobile precursors for dissociation of chemisorption on extended metals and on clusters. Are there analogies in the ligand attachment during cluster compound synthesis? (5) The role of defect sites on metal surfaces in catalyzing chemical reactions and the connection to the special bonding properties of sites on metal clusters having lowest metal-metal coordination. (6) The size of metal clusters needed to mimic surface phenomena on bulk metal surfaces. Different sites needed for different phenomena.
Dr. Heinonen reviews and critically evaluates the scientific literature on the biological role of inorganic pyrophosphate (PPi ) published from 1940 to the end of 1999. He describes and classifies all known biochemical reactions that produce Ppi; describes and evaluates all published methods used in biological Ppi; and compiles and critically evaluates information on the concentration of PPi (with the conclusion that, contrary to common belief, PPi exists throughout the living world in rather high concentrations). Many reactions in which PPi is used as a biochemical energy source instead of ATP have been described in recent decades, especially in bacteria, protists, and plants. These reactions are evaluated from the bioenergetic and regulatory points of view. Also considered is the possible role of PPi as a source of biochemical energy in the primitive phases of life, before ATP. Data is presented on the regulatory role of PPi in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Biological Role of Inorganic Pyrophosphate book is a unique and invaluable source of references (about 1120) and summarized data for professionals who study or plan to study the role of PPi in living systems. Many different branches of science (biochemistry, microbiology, bioenergetics, plant physiology, parasitology, evolution, orthopedics, rheumatology) have involvement with PPi. This book sums up available knowledge in one place and will help scientists cross disciplinary boundaries.
Taking a critical approach toward novel colloid systems and phenomena, this series provides both the historical development and a digest of recent advances. The current volume focuses on solutions containing surfactants and polymers, with special emphasis on micelle formation and microemulsions.
This volume chronicles the proceedings of the Third Symposium on Metallized Plastics: Fundamental and Applied Aspects held under the auspices of the Dielectric Science and Technology Division of the Electrochemical Society in Phoenix, Arizona, October 13-18, 1991. This series of symposia to address the subject of metallized plastics was initiated in 1988 and the premier symposium was held in Chicago, October 10-12, 1988, followed by the second event in Montreal, Canada, May 7-10, 1990. The rroceedings of these two symposia have been properly documented ,2. The third symposium was a huge success like the previous two events, and all this is testimonial to the brisk interest and high tempo of R&D activity in the fie14 of metallized plastics. This further bolsters our earlier thinking that there was a conspicuous need to hold symposia on this topic on a regular basis and the fourth is planned for May 16-21, 1993 in Honolulu, Hawaii. The study of metallized plastics constitutes an important human endeavor l and as pointed out earlier there are myriad applications of metallized plastics ranging from very commonplace to exotic. Also a survey of the recent literature will reveal that both the fundamental and applied aspects of metallized plastics are being pursued with great vigor.
Theoretical and numerical details of an optimized LCAO (linear combination of atomic orbitals) method for the calculation of self-consistent bandstructures are given together with a variety of examples. The method will be a valuable tool both for researchers engaged in calculations and for scientists looking for numerical results of self-consistent bandstructure calculations. The presentation starts with an introduction to the modern many-body theory of electronic bandstructure. The essentials of the representation with a non-orthogonal basis and the usual tight-binding variants are critically reviewed. A variational approach to the optimization of atom-like basis orbitals is described together with an SCF procedure for band calculations. Complete numerical and graphic results for all elementary metals from lithium to zinc are given.
When presented with a new compound or material, the inorganic chemist will usually have several questions in mind about its composition and structure. Although a simple elemental analysis may answer many questions about its composition, the chemist will still have questions about its structure, and, ifthe material contains a metal atom, he will often want to know its oxidation state, coordination number and geometry. Further, at an increasingly frequent rate, the chemist may need details of the spin state, magnetic and perhaps dynamic properties of the material. If the investigator is fortunate, the material or compound may contain an ele ment such as iron, tin, antimony, iodine, gold, or one of several of the rare earth metals which are amenable to study by the Mossbauer effect. Often the Mossbauer effect can, sometimes with quite simple experiments, provide the answers to all of these questions. The goal of this book is to illustrate the effectiveness of the Mossbauer effect in providing the answers to the many questions that arise in char acterizing new materials and, indeed, in studying known materials in more detail. Several chapters introduce the effect to the novice and provide details about the various hyperfine interactions that are the "bread and butter" of the Mossbauer spectroscopist. Three chapters deal specifically with the experimental aspects of the technique and the increasing impor tance of sophisticated computer analysis of the resulting data." |
You may like...
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Photonic and Electronic Properties of…
Alain Tressaud, Kenneth R. Poeppelmeier
Hardcover
R3,549
Discovery Miles 35 490
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R2,999
Discovery Miles 29 990
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,206
Discovery Miles 52 060
Polyoxometalate-Based Hybrids and their…
Majid M. Heravi, Masoud Mirzaei
Paperback
R4,443
Discovery Miles 44 430
|