![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
Silicon and silicon compounds have contributed decisively to the technical progress. Technical applications range from mass commodities to highly sophisticated special materials, from ceramics to polymers, from medicine to microelectronics. To keep pace with scientific and technical developments Germany and Austria have established national priority programs, strongly linked to each other as well as to some Swiss groups. At mid-term of the German program and the end of the first funding period of the Austrian program the results are summarized in this special edition of the journal Monatshefte fur Chemie/Chemical Monthly, giving an excellent overview of the current chemical (and partly physical) acitivites in the joint Austrian/German/Swiss program. The contributions cover topical and interdisciplinary developments in the following areas: * new phenomena in compounds with Si-Si bonds: transitions between molecular compounds and solids, cyclosilanes, polysilanes, silicides, amorphous hydrogenated silicon, * novel silicon-oxygen systems: functionalized sol-gel compounds, spherosiloxanes, siloxene, * compounds with low- and high-coordinated silicon, * new spectroscopic and analytical techniques for the characterization of molecular and polymeric silicon compounds.
A summary of all the most important aspects of supramolecular science, from molecular recognition in chemical and biological systems to supramolecular devices, materials and catalysis. The 17 chapters cover calixarenes, catenanes, cavitands, cholophanes, dendrimers, membranes and self-assembly systems, molecular modelling, molecular level devices, organic materials, peptides and protein surfaces, recognition of carbohydrates, rotaxanes, supramolecular catalysis. A forward-looking chapter written by J.-M. Lehn indicated the future prospects for the entire field. Audience: Ph.D. students and young researchers in chemistry, physics and biology.
One of the characteristics of the development of chemical science in the middle of the present century is the vigorous pro gress of the "third chemistry," which is often named now the chemistry of heteroorganic compounds. Then in the last decade, among specialists in this field there has been a marked increase in interest in heteroatomic organic derivatives of silicon, i. e. , heteroorganic silicon compounds. However, until recently this new class of chemical substances, which is extremely interesting theoretically and practically, has been without a single specialized monograph which systematizes and generalizes all progress in the heteroorganic chemistry of silicon. The first attempt in this direction was our book "Heteroorganic Compounds of Silicon" [42 (F), 17 (S) *], which appeared at the end of 1966 and was published as an English translation in the USA in 1969. However, as follows from its subtitle "Derivatives of Inorganic Elements," this mono graph could not cover the whole broad field of the chemistry of heteroorganic compounds of silicon. The main reason for this was above all the abundance and variety of original investigations of organosilicon derivatives of inorganic elements, which was un expected even to the authors themselves. As a result of this the planned length of the book compelled us to omit the sections on organosilicon compounds of phosphorus and sulfur, which had al ready been prepared for publication.
There are numerous criteria for measuring the growth and development of branches of chemistry. This valuable book illustrates a particular aspect of the growth of organosilicon chemistry. The extent of this field has developed so greatly in recent years that it now is desirable to reclassify parts to bring together hitherto frag mented and relatively disparate sections. This has been accomplished by the presently available large units which have been deSignated as "organosilicon heterocompounds. " Simplified expressions of such classification are structural units of the general type C - Si - heteroelement and heteroelement-C - Si, in which there are attached to the organosilicon moiety elements such as oxygen, nitrogen, metals, etc. This arrangement per mits the correlation of extensive material, which will be invalu able to chemists in many areas, both in and out of organosi- con chemistry. Because of the wealth of information, the authors are currently engaged in the preparation of companion volumes arranged on this general principle. The scope is broad, and includes material which will prove highly interesting and useful to those in academic, industrial, and governmental circles. There is not only a wide coverage of the literature generally, but the listings of patent references and of general reviews and books are among the most complete so far presented."
Organometallic chemistry belongs to the most rapidly developing area of chemistry today. This is due to the fact that research dealing with the structure of compounds and chemical bonding has been greatly intensified in recent years. Additionally, organometallic compounds have been widely utilized in catalysis, organic synthesis, electronics, etc. This book is based on my lectures concerning basic organometallic chemistry for fourth and fifth year chemistry students and on my lectures concerning advanced organometallic chemistry and homogeneous catalysis for Ph.D. graduate students. Many recent developments in the area of organometallic chemistry as weIl as homogeneous catalysis are presented. Essential research results dealing with a given class of organometallic compounds are discussed briefly. Results of physicochemical research methods of various organometallic compounds as weIl as their synthesis, properties, structures, reactivities, and applications are discussed more thoroughly. The selection of tabulated data is arbitrary because, often, it has been impossible to avoid omissions. Nevertheless, these data can be very helpful in understanding properties of organometaIlic compounds and their reactivities. All physical data are given in SI units; the interatomic distances are given in pm units in figures and tables. I am indebted to Professor S. A. Duraj for translating and editing this book. His remarks, discussions, and suggestions are greatly appreciated. I also express gratitude to Virginia E. Duraj for editing and proofreading.
''A grand compilation...Well-bound, well-printed....It is sure that this pioneering book will help growing interest of the separation scientists in aqueous biphasic systems and broaden the scope of the field.'' --- Indian Chemical Society, 1998
Dr. Heinonen reviews and critically evaluates the scientific literature on the biological role of inorganic pyrophosphate (PPi ) published from 1940 to the end of 1999. He describes and classifies all known biochemical reactions that produce Ppi; describes and evaluates all published methods used in biological Ppi; and compiles and critically evaluates information on the concentration of PPi (with the conclusion that, contrary to common belief, PPi exists throughout the living world in rather high concentrations). Many reactions in which PPi is used as a biochemical energy source instead of ATP have been described in recent decades, especially in bacteria, protists, and plants. These reactions are evaluated from the bioenergetic and regulatory points of view. Also considered is the possible role of PPi as a source of biochemical energy in the primitive phases of life, before ATP. Data is presented on the regulatory role of PPi in living systems, such as activities of enzymes, fidelity of syntheses of macromolecules, and proliferation of cells. PPi may also regulate the formation and dissolution of bone as well as pathologic calcification of soft tissues and the formation of urinary stones. The formation of calcium pyrophosphate dihydrate crystals in the extracellular fluids of joints cause the disease called pseudogout. Biological Role of Inorganic Pyrophosphate book is a unique and invaluable source of references (about 1120) and summarized data for professionals who study or plan to study the role of PPi in living systems. Many different branches of science (biochemistry, microbiology, bioenergetics, plant physiology, parasitology, evolution, orthopedics, rheumatology) have involvement with PPi. This book sums up available knowledge in one place and will help scientists cross disciplinary boundaries.
The analogy between the chemistry of molecular transition metal clusters and the processes of chemisorption and catalysis at metal surfaces (the Cluster Surface analogy) has for a number of years provided an interplay between experimental and theoretical inorganic and physical chemists. This collaborative approach has born fruit in the use of well defined modes of metal-ligand bonding in discrete molecular clusters, models for metal-ligand binding on surfaces. Some of the key topics discussed in The Synergy between Dynamics and Reactivity at Clusters and Surfaces are: (1) Mechanisms of the fluxional behaviour in clusters in the liquid phase and the connections with diffusion processes on extended surfaces. The role of metal-metal bond breaking in diffusion. (2) Analogies in the structure of chemisorbed species and related ligands on metallic clusters. (3) Analogies between benzene surface chemistry on extended metal surfaces and on metal surfaces in molecular cluster compounds with particular reference to structural distortions. (4) The role of mobile precursors for dissociation of chemisorption on extended metals and on clusters. Are there analogies in the ligand attachment during cluster compound synthesis? (5) The role of defect sites on metal surfaces in catalyzing chemical reactions and the connection to the special bonding properties of sites on metal clusters having lowest metal-metal coordination. (6) The size of metal clusters needed to mimic surface phenomena on bulk metal surfaces. Different sites needed for different phenomena.
This volume chronicles the proceedings of the Third Symposium on Metallized Plastics: Fundamental and Applied Aspects held under the auspices of the Dielectric Science and Technology Division of the Electrochemical Society in Phoenix, Arizona, October 13-18, 1991. This series of symposia to address the subject of metallized plastics was initiated in 1988 and the premier symposium was held in Chicago, October 10-12, 1988, followed by the second event in Montreal, Canada, May 7-10, 1990. The rroceedings of these two symposia have been properly documented ,2. The third symposium was a huge success like the previous two events, and all this is testimonial to the brisk interest and high tempo of R&D activity in the fie14 of metallized plastics. This further bolsters our earlier thinking that there was a conspicuous need to hold symposia on this topic on a regular basis and the fourth is planned for May 16-21, 1993 in Honolulu, Hawaii. The study of metallized plastics constitutes an important human endeavor l and as pointed out earlier there are myriad applications of metallized plastics ranging from very commonplace to exotic. Also a survey of the recent literature will reveal that both the fundamental and applied aspects of metallized plastics are being pursued with great vigor.
Taking a critical approach toward novel colloid systems and phenomena, this series provides both the historical development and a digest of recent advances. The current volume focuses on solutions containing surfactants and polymers, with special emphasis on micelle formation and microemulsions.
The subject of acidity and basicity has enormous economic and technological value while it continues to present significant scientific challenges with prospects for further important technological developments. Historically, technological developments in acidity/basicity have often preceded the scientific understanding of the phenomena involved, certainly in the petroleum industry, a key beneficiarry and user of the concepts of acidity. This process, however, is very expensive and less efficient than developments based on a fundamental understanding of the scientific phenomena involved. This has been recognized over the years and it explains why university, government and industrial laboratories have in the last 50 years devoted large efforts to understanding acidity (and basicity to a lesser extent) so they can gain the technological advantage. The scientific and technological literature on the subject is truly enormous. There have been some very important articles and books on the subject that have attempted to critically review many individual contributions. During the last few years there have been three developments that led us to organize the Advanced Study Institute on which this volume is based: a) Significant developments in the theory of acids and bases; b) Developments in instrumentation that allow the detailed characterization of materials including in-situ conditions relevant to industrial processes; c) The realization that closer coupling of scientific and technological pursuits can lead to greater scientific understanding and better technology. The structure of the ASI reflected the coming-together of these three factors.
When presented with a new compound or material, the inorganic chemist will usually have several questions in mind about its composition and structure. Although a simple elemental analysis may answer many questions about its composition, the chemist will still have questions about its structure, and, ifthe material contains a metal atom, he will often want to know its oxidation state, coordination number and geometry. Further, at an increasingly frequent rate, the chemist may need details of the spin state, magnetic and perhaps dynamic properties of the material. If the investigator is fortunate, the material or compound may contain an ele ment such as iron, tin, antimony, iodine, gold, or one of several of the rare earth metals which are amenable to study by the Mossbauer effect. Often the Mossbauer effect can, sometimes with quite simple experiments, provide the answers to all of these questions. The goal of this book is to illustrate the effectiveness of the Mossbauer effect in providing the answers to the many questions that arise in char acterizing new materials and, indeed, in studying known materials in more detail. Several chapters introduce the effect to the novice and provide details about the various hyperfine interactions that are the "bread and butter" of the Mossbauer spectroscopist. Three chapters deal specifically with the experimental aspects of the technique and the increasing impor tance of sophisticated computer analysis of the resulting data."
During the last decade, interest in the chemistry of biological systems, as well as in molecular chemical engineering, has grown considerably. Many fields in modern chemistry are contributing to a better understanding of elementary mechanisms of various biological processes and this has resulted in the development of new classes of organic and organometallic compounds with specific and high biological activity. Such a multidisciplinary approach creates opportunities for an exchange of ideas and the need to create a common language. This volume contains a collection of papers, written by leading scientists which collectively provide a rich overview of current research activities relating to the chemistry of biological systems. These papers emphasize the interdisciplinary nature of this research. For researchers in academia and industry whose work involves the chemistry and properties of biomolecular systems.
This volume contains the proceedings of the third Euroconference on Atomic Phys ics at Accelerators (APAC 2001), with the title Stored Particles and Fundamental Physics. It was held in Aarhus, Denmark, from September 8 to 13 at the Marselis Hotel located near the beach and the Marselis Woods outside Aarhus, but some of the activities took place at the Department of Physics, University of Aarhus. The conference was sponsored by the Commission of the European Union (Contract No. ERBFMMACT980469) and also by the Danish Research Foundation through ACAP (Aarhus Center for Atomic Physics). The meeting was focused on the application of storage rings for atomic physics, and there are two fairly small rings in Aarhus, ASTRID (Aarhus STorage Ring for Ions,Denmark) and ELISA (ELectrostatic Ion Storage ring, Aarhus). The research at these rings has contributed to the strong position of European Science in this field. Both rings are designed according to unique concepts. ASTRID is a dual purpose ring, which half the time stores electrons for the generation of low-energy synchrotron radiation. The storage of negative particles has also been a unique feature for the application of ASTRID as an ion storage ring.
The objective of Mechanisms of Inorganic and Organometallic Reactions is to provide an ongoing critical review of the literature concerned with the mechanisms of reactions of inorganic and organometallic compounds. The main focus is on reactions in solution, although solid state and gas phase studies are included where they provide relevant mechanistic insight. Each volume covers an eighteen month literature period, and this, the seventh volume in the series, deals with papers published during July 1988 through December 1989. Where appropriate, there are references to earlier work, and also to specific sections in previous volumes. Coverage continues to span the whole area as comprehensively as possible in each volume, and although it is impossible be absolutely complete, every effort is made to include all the important for it to published work that is relevant to the elucidation of reaction mechanisms. Numerical data are reported in the units used by the original authors, and they are only converted to common units when making comparisons. The basic format of earlier volumes is retained to facilitate tracing progress over several years in a particular topic; this can now be done for more than a decade worth of research. In the last volume, ligand reactivity of both coordination and organometallic compounds were brought together in Chapter 12, and, in response to numerous positive comments from readers, this arrangement has been maintained. There have been some similar suggestions about oscillating reactions, and this topic may have a separate section in the next volume.
The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus sion on point symmetry to include space symmetry. The selection rules in clude space group selection rules (for k = 0). Numerous examples are pro vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor dinate treatment of molecules. We have chosen to exclude discussion on symmetry aspects of molecular orbital theory and ligand field theory. It has been our approach to highlight vibrational data only, primarily to keep the size and cost of the book to a reasonable limit."
1 Oxford and Webster's dictionaries,2 give trans-Atlantic agreement in English with a common definition for 'Quality' as 'degree of excellence'. Compared with the many words taken up by other authors' definitions, this is remarkably brief and no doubt unsatisfactory to many people. Yet if 'degree' means a stage in an ascending or descending series, in intensity or in amount, then measurement is by definition explicitly required if terms such as 'quality level', 'good quality', 'high quality' etc. are to have any real meaning. Using measurement is inherent in the methods of all the major writers on the achievement of business improvement through quality. Results from measurements allow improvement by using tools commonly grouped under the heading Statistical Process Control (SPC). Results also form part of the judging criteria of Total Quality Management (TQM) models such as the Malcolm Baldrige National Quality Award in the USA and the more recent European Quality Award. Future revisions of the ISO 9000 series of quality management system standards will specifically require measure ment of defects. However, it is not easy for quality professionals or line managers to find examples of what they should measure and how to do it in their own particular functions in their own particular industries; case st\}dies always seem to refer to others."
In the last 15 years aqueous organometallic chemistry and catalysis has emerged from being a laboratory curiosity to become an established field of research. Topics reviewed here include mechanistic studies on the effect of water on catalyzed reactions, the preparation of water soluble phosphines as ligands for catalysis, metal catalyzed organic reactions in water (hydrogenation, hydroformylation, carbonylation, olefin metathesis, hydrophosphination, etc.), chiral ligands and enantioselective catalysis, organometallic radical photochemistry in aqueous solutions, bioorganometallic chemistry, organometallic reactions of biopolymers, and catalytic modification of biomembranes. The summary of recent results is supplemented by an assessment of probable future research trends. Audience: Researchers in both academia and industry, as well as graduate students of homogeneous catalysis.
This volume contains the proceedings of the NATO Advanced Research Workshop on "Atomic and Molecular Wires". It was sponsored by the Ministry of Scientific Affairs Division special program on Nanoscale Science with the support of the CNRS and the Max Planck Institute. Scientists working or interested in the properties of wires at a subnanoscale were brought together in Les Houches (France) from 6 to 10 May 1996. Subnanoscale wires can be fabricated either by surface physicists (atomic wires) or by synthetic chemists (molecular wires). Both communities present their foremost advances using, for example, STM to assemble atomic lines atom for atom, to fabricate a mask for such a line or using the wide range of chemical synthesis techniques to obtain long, rigid and conjugated oligomers. Interconnecting such tiny wires to sources (voltage, current) continues to demand a great technological effort. But nanolithography associated with microfabrication or STM are now clearly identified paths for measuring the electrical resistance of an atomic or a molecular wire. The first measurements have been reported on Xe , benzene, C ' di(phenylene-ethynylene) showing 2 60 the need for a deeper understanding of transport phenomena through subnanowires. Such transport phenomena like tunnel (off-resonance) transport and Coulomb blockade have been discussed by theorists with an emphasis on the exponential decrease of the tunnel current with the wire length versus the ballistic regime of transport.
This book introduces the concept of crystallographic non- rigidity and asymmetry of the transition elements as central atoms organometallic compounds. This intrinsic behavior of central atoms in condensed matter is quantified by applying statistical approach. Averaging of extrinsic factors in crystal structures is tested by using variance analysis. Introductionof the above mentioned concept and applications of variance analysis as an approximation for considering factors influencing properties of central atomin the crystal is original and new.
Nearly three years have passed since the publication of the original Russian edition, in which time there have appeared various papers on recent research on the transuranium elements, of which the most notable concern the production of element 105 at Dubna and Berkeley. There has also been much fresh information on elements 104 (kurchatovium) and 103 (lawrencium). Our knowledge of shell effects in the fission barrier has been extended. Hopes of finding relatively stable superheavy elements have stimulated searches for such elements in nature as well as rapid development in heavy ion acceleration. We may see some very considerable discoveries in the next few years. The new results vary in reliability, and so it is not surprising that some papers on the properties of the heaviest elements have given rise to vigorous debates, whose value lies in the way they ad vance the subject. We have not attempted to give an exhaustive survey of recent papers and have merely added brief sections to reflect what we con sider to be the most important points from these. So far, the United states and the USSR have made the most considerable contributions to the synthesis, study, and use of the transuranium elements, so it is especially welcome to us that this book, first published in our country, should now appear in the USA in an English translation.
One of the major challenges of science in the last few years of the second millennium is learning how to design materials which can fulfill specific tasks. Ambitious as it may be, the possibilities of success are not ne li ble provided that all the different expertises merge to overcome the limits of eXIsting disciplines and forming new paradigms science. The NATO Advanced Research Workshop on "Magnetic Molecular Materials" was organized with the above considerations in mind in order to determine which are the most appropriate synthetic strategies, experimental techniques of investigation, and theoretical models which are needed in order to develop new classes of magnetic materials which are based on molecules rather than on metallic or ionic lattices. Why molecules? The answer may be obvious: molecular chemistry in principle fine can tune the structures and the properties of complex aggregates, and nature already provides a large number of molecular aggregates which can perform the most disparate functions. The contributions collected in this book provide a rather complete view of the current research accomplishments of magnetic molecular materials. There are several different synthetic approaches which are followed ranging from purely organic to inorganic materials. Some encouraging successes have already been achieved, even if the critical temperatures below which magnetic order is observed still are in the range requiring liquid helium.
The ever-increasing importance of chemical reactions at high and superhigh temperatures in crystalline, amorphous, and semicrystalline SOlids, as well as the reactions of these solids with gases, prompted the authors of this book to examine critically the literature available in this field and to present a general review of the subject. In this monograph we discuss those chemical and physicochemical points which we consider to be most important for solving a series of problems in the preparation and use of new inorganic materials. We hope that this book will be of interest to the many specialists working on inorganic materials. N. A. Toropov PREFACE Modem technology demands ever more materials with high mechanical strength, heat and chemical re sistance, fire resistance, special electrical properties, particular behavior toward active radiations, etc. The search for such materials requires the study of various chemical compounds, metallic alloys, and other fused in organic systems, especially oxide systems. Materials based on oxides begin to assume increasing importance in many fields of the new technology. In this connection the investigation of oxides and systems consisting of two and more oxides is expanding greatly.
During the last decade there has been a renewed interest in under standing from a fundamental point of view the gasification of carbon. Basi cally there are two major issues in controlling the reactivity of carbon: i) reduction of the gasification rate of carbon materials in hostile environment ii) increase of the gasification rate in order to utilize carbonaceous compounds more effectively. Although these two objectives look somewhat contradictory, they are part of the general topics of understanding gasification reactivity of carbon. Refractory applications of carbon in furnace linings, seals and vanes, as well as the use of carbon-carbon or carbon-ceramic composites in struc tures able to withstand corrosion at high temperature require a better understanding of the fundamentals involved in carbon-oxidizing gas (02' CO, H 0) reactions. Furthermore a great interest of aluminium producers 2 2 is 10 extending the lifetime of carbon electrodes in alumina electrolysis which primarily depends on reducing their consumption rates by air or carbon dioxide. Proper control of gasification reactions is also of prime importance in manufacturing carbonaceous adsorbents like granular activated carbon clothes of high adsorption characteristics. The balance between increase of porosity and decrease in mechanical strength during activation is critical for developing new porous types of carbon materials in particular for carbon clothes and this can only be achieved by a careful control of the gasification reaction." |
![]() ![]() You may like...
Teaching, Technology, Textuality…
Michael Hanrahan, Deborah L. Madsen
Hardcover
R1,515
Discovery Miles 15 150
Domain-Level Reasoning for Spoken…
Dirk Buhler, Wolfgang Minker
Hardcover
R2,875
Discovery Miles 28 750
Learning Language and Culture Via Public…
B Hanna, J. De Nooy, …
Hardcover
R1,516
Discovery Miles 15 160
Inspections and Reports on Dwellings…
Ian A. Melville, Ian A. Gordon
Paperback
R2,353
Discovery Miles 23 530
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|