![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
When presented with a new compound or material, the inorganic chemist will usually have several questions in mind about its composition and structure. Although a simple elemental analysis may answer many questions about its composition, the chemist will still have questions about its structure, and, ifthe material contains a metal atom, he will often want to know its oxidation state, coordination number and geometry. Further, at an increasingly frequent rate, the chemist may need details of the spin state, magnetic and perhaps dynamic properties of the material. If the investigator is fortunate, the material or compound may contain an ele ment such as iron, tin, antimony, iodine, gold, or one of several of the rare earth metals which are amenable to study by the Mossbauer effect. Often the Mossbauer effect can, sometimes with quite simple experiments, provide the answers to all of these questions. The goal of this book is to illustrate the effectiveness of the Mossbauer effect in providing the answers to the many questions that arise in char acterizing new materials and, indeed, in studying known materials in more detail. Several chapters introduce the effect to the novice and provide details about the various hyperfine interactions that are the "bread and butter" of the Mossbauer spectroscopist. Three chapters deal specifically with the experimental aspects of the technique and the increasing impor tance of sophisticated computer analysis of the resulting data."
The subject of acidity and basicity has enormous economic and technological value while it continues to present significant scientific challenges with prospects for further important technological developments. Historically, technological developments in acidity/basicity have often preceded the scientific understanding of the phenomena involved, certainly in the petroleum industry, a key beneficiarry and user of the concepts of acidity. This process, however, is very expensive and less efficient than developments based on a fundamental understanding of the scientific phenomena involved. This has been recognized over the years and it explains why university, government and industrial laboratories have in the last 50 years devoted large efforts to understanding acidity (and basicity to a lesser extent) so they can gain the technological advantage. The scientific and technological literature on the subject is truly enormous. There have been some very important articles and books on the subject that have attempted to critically review many individual contributions. During the last few years there have been three developments that led us to organize the Advanced Study Institute on which this volume is based: a) Significant developments in the theory of acids and bases; b) Developments in instrumentation that allow the detailed characterization of materials including in-situ conditions relevant to industrial processes; c) The realization that closer coupling of scientific and technological pursuits can lead to greater scientific understanding and better technology. The structure of the ASI reflected the coming-together of these three factors.
The objective of Mechanisms of Inorganic and Organometallic Reactions is to provide an ongoing critical review of the literature concerned with the mechanisms of reactions of inorganic and organometallic compounds. The main focus is on reactions in solution, although solid state and gas phase studies are included where they provide relevant mechanistic insight. Each volume covers an eighteen month literature period, and this, the seventh volume in the series, deals with papers published during July 1988 through December 1989. Where appropriate, there are references to earlier work, and also to specific sections in previous volumes. Coverage continues to span the whole area as comprehensively as possible in each volume, and although it is impossible be absolutely complete, every effort is made to include all the important for it to published work that is relevant to the elucidation of reaction mechanisms. Numerical data are reported in the units used by the original authors, and they are only converted to common units when making comparisons. The basic format of earlier volumes is retained to facilitate tracing progress over several years in a particular topic; this can now be done for more than a decade worth of research. In the last volume, ligand reactivity of both coordination and organometallic compounds were brought together in Chapter 12, and, in response to numerous positive comments from readers, this arrangement has been maintained. There have been some similar suggestions about oscillating reactions, and this topic may have a separate section in the next volume.
During the last decade, interest in the chemistry of biological systems, as well as in molecular chemical engineering, has grown considerably. Many fields in modern chemistry are contributing to a better understanding of elementary mechanisms of various biological processes and this has resulted in the development of new classes of organic and organometallic compounds with specific and high biological activity. Such a multidisciplinary approach creates opportunities for an exchange of ideas and the need to create a common language. This volume contains a collection of papers, written by leading scientists which collectively provide a rich overview of current research activities relating to the chemistry of biological systems. These papers emphasize the interdisciplinary nature of this research. For researchers in academia and industry whose work involves the chemistry and properties of biomolecular systems.
This volume contains the proceedings of the third Euroconference on Atomic Phys ics at Accelerators (APAC 2001), with the title Stored Particles and Fundamental Physics. It was held in Aarhus, Denmark, from September 8 to 13 at the Marselis Hotel located near the beach and the Marselis Woods outside Aarhus, but some of the activities took place at the Department of Physics, University of Aarhus. The conference was sponsored by the Commission of the European Union (Contract No. ERBFMMACT980469) and also by the Danish Research Foundation through ACAP (Aarhus Center for Atomic Physics). The meeting was focused on the application of storage rings for atomic physics, and there are two fairly small rings in Aarhus, ASTRID (Aarhus STorage Ring for Ions,Denmark) and ELISA (ELectrostatic Ion Storage ring, Aarhus). The research at these rings has contributed to the strong position of European Science in this field. Both rings are designed according to unique concepts. ASTRID is a dual purpose ring, which half the time stores electrons for the generation of low-energy synchrotron radiation. The storage of negative particles has also been a unique feature for the application of ASTRID as an ion storage ring.
The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus sion on point symmetry to include space symmetry. The selection rules in clude space group selection rules (for k = 0). Numerous examples are pro vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor dinate treatment of molecules. We have chosen to exclude discussion on symmetry aspects of molecular orbital theory and ligand field theory. It has been our approach to highlight vibrational data only, primarily to keep the size and cost of the book to a reasonable limit."
NMR is better suited than any other experimental technique for the characterization of supramolecular systems in solution. The presentations included here can be broadly divided into three classes. The first class illustrates the state of the art in the design of supramolecular systems and includes examples of different classes of supramolecular complexes: catenanes, rotaxanes, hydrogen-bonded rosettes, tubes, capsules, dendrimers, and metal-containing hosts. The second class comprises contributions to NMR methods that can be applied to address the main structural problems that arise in supramolecular chemistry. The third class includes biological supramolecular systems studied by state-of-the-art NMR techniques.
Microcluster Physics provides a lucid account of the fundamental physics of all types of microclusters, outlining the dynamics and static properties of this new phase of matter intermediate between a solid and a molecule. Since originally published in 1991, the field of microclusters has experienced surprising developments, which are reviewed in this new edition: The determination of atomic structure, spontaneous alloying, super-shell, fission, fragmentation, evaporation, magnetism, fullerenes, nanotubes, atomic structure of large silicon clusters, superfluidity of a He cluster, water clusters in liquid, electron correlation and optimizsation of the geometry, and scattering.
217 2. COPOLYMERIZATION OF PROPENE OR HIGHER I-ALKENES WITH 218 CARBON MONOXIDE 2. 1. Ligands and polymerization conditions 218 2. 2. Spiroketal formation 221 2. 3. Enantioselectivity 222 2. 4. Higher I-Alkenes 226 3. COPOLYMERIZATION OF STYRENE OR ITS DERIVATIVES WITH 226 CARBON MONOXIDE 4. COPOLYMERIZATION OF OTHER OLEANS WITH CARBON MONOXIDE 230 5. ASYMMETRIC TERPOLYMERIZATION OF MORE THAN Two KINDS OF 232 OLEFINS WITH CARBON MONOXIDE 6. POLYKETONE CONFORMATION 233 7. CONCLUSION 234 Chapter 8. Chain Propagation Mechanisms 237 Ayusman Sen 1. INTRODUCTION 237 2. PALLADIUM (II) BASED SYSTEMS 238 3. NICKEL (II) BASED SYSTEMS 256 4. RHODIUM (I) BASED SYSTEMS 257 5. CONCLUSION 261 Chapter 9. Theoretical Studies on Copolymerization of Polar Monomers 265 Peter Margl, Artur Michalak, and Tom Ziegler 1. INTRODUCTION 265 2. COPOLYMERIZATION OF CARBON MONOXIDE WITH ETHYLENE 267 2. 1. Experimental and calculated rates for the insertion processes for 267 copolymerization catalysed by Pd(II) systems. 2. 2. A more detailed look at the productive and unproductive cycles 270 in copolymerization catalysed by Pd(II) complexes. 2. 2. 1. The productive cycle 270 2. 2. 2. C2H4 misinsertion into an ethylene terminated polyketone 275 chain 2. 3. Experimental and calculated rates for the insertion processes for 277 alternating copolymerization catalyzed by Ni(II) systems 3. COPOLYMERIZATION OF OLEFINS WITH POLAR MONOMERS OTHER 280 THAN CO 3. 1. Preferred binding mode of oxygen containing monomers 282 3. 2. Preferred binding mode of nitrogen containing monomers 285 3. 3.
In the last 15 years aqueous organometallic chemistry and catalysis has emerged from being a laboratory curiosity to become an established field of research. Topics reviewed here include mechanistic studies on the effect of water on catalyzed reactions, the preparation of water soluble phosphines as ligands for catalysis, metal catalyzed organic reactions in water (hydrogenation, hydroformylation, carbonylation, olefin metathesis, hydrophosphination, etc.), chiral ligands and enantioselective catalysis, organometallic radical photochemistry in aqueous solutions, bioorganometallic chemistry, organometallic reactions of biopolymers, and catalytic modification of biomembranes. The summary of recent results is supplemented by an assessment of probable future research trends. Audience: Researchers in both academia and industry, as well as graduate students of homogeneous catalysis.
Nearly three years have passed since the publication of the original Russian edition, in which time there have appeared various papers on recent research on the transuranium elements, of which the most notable concern the production of element 105 at Dubna and Berkeley. There has also been much fresh information on elements 104 (kurchatovium) and 103 (lawrencium). Our knowledge of shell effects in the fission barrier has been extended. Hopes of finding relatively stable superheavy elements have stimulated searches for such elements in nature as well as rapid development in heavy ion acceleration. We may see some very considerable discoveries in the next few years. The new results vary in reliability, and so it is not surprising that some papers on the properties of the heaviest elements have given rise to vigorous debates, whose value lies in the way they ad vance the subject. We have not attempted to give an exhaustive survey of recent papers and have merely added brief sections to reflect what we con sider to be the most important points from these. So far, the United states and the USSR have made the most considerable contributions to the synthesis, study, and use of the transuranium elements, so it is especially welcome to us that this book, first published in our country, should now appear in the USA in an English translation.
This volume contains the proceedings of the NATO Advanced Research Workshop on "Atomic and Molecular Wires". It was sponsored by the Ministry of Scientific Affairs Division special program on Nanoscale Science with the support of the CNRS and the Max Planck Institute. Scientists working or interested in the properties of wires at a subnanoscale were brought together in Les Houches (France) from 6 to 10 May 1996. Subnanoscale wires can be fabricated either by surface physicists (atomic wires) or by synthetic chemists (molecular wires). Both communities present their foremost advances using, for example, STM to assemble atomic lines atom for atom, to fabricate a mask for such a line or using the wide range of chemical synthesis techniques to obtain long, rigid and conjugated oligomers. Interconnecting such tiny wires to sources (voltage, current) continues to demand a great technological effort. But nanolithography associated with microfabrication or STM are now clearly identified paths for measuring the electrical resistance of an atomic or a molecular wire. The first measurements have been reported on Xe , benzene, C ' di(phenylene-ethynylene) showing 2 60 the need for a deeper understanding of transport phenomena through subnanowires. Such transport phenomena like tunnel (off-resonance) transport and Coulomb blockade have been discussed by theorists with an emphasis on the exponential decrease of the tunnel current with the wire length versus the ballistic regime of transport.
This book introduces the concept of crystallographic non- rigidity and asymmetry of the transition elements as central atoms organometallic compounds. This intrinsic behavior of central atoms in condensed matter is quantified by applying statistical approach. Averaging of extrinsic factors in crystal structures is tested by using variance analysis. Introductionof the above mentioned concept and applications of variance analysis as an approximation for considering factors influencing properties of central atomin the crystal is original and new.
The ever-increasing importance of chemical reactions at high and superhigh temperatures in crystalline, amorphous, and semicrystalline SOlids, as well as the reactions of these solids with gases, prompted the authors of this book to examine critically the literature available in this field and to present a general review of the subject. In this monograph we discuss those chemical and physicochemical points which we consider to be most important for solving a series of problems in the preparation and use of new inorganic materials. We hope that this book will be of interest to the many specialists working on inorganic materials. N. A. Toropov PREFACE Modem technology demands ever more materials with high mechanical strength, heat and chemical re sistance, fire resistance, special electrical properties, particular behavior toward active radiations, etc. The search for such materials requires the study of various chemical compounds, metallic alloys, and other fused in organic systems, especially oxide systems. Materials based on oxides begin to assume increasing importance in many fields of the new technology. In this connection the investigation of oxides and systems consisting of two and more oxides is expanding greatly.
1 Oxford and Webster's dictionaries,2 give trans-Atlantic agreement in English with a common definition for 'Quality' as 'degree of excellence'. Compared with the many words taken up by other authors' definitions, this is remarkably brief and no doubt unsatisfactory to many people. Yet if 'degree' means a stage in an ascending or descending series, in intensity or in amount, then measurement is by definition explicitly required if terms such as 'quality level', 'good quality', 'high quality' etc. are to have any real meaning. Using measurement is inherent in the methods of all the major writers on the achievement of business improvement through quality. Results from measurements allow improvement by using tools commonly grouped under the heading Statistical Process Control (SPC). Results also form part of the judging criteria of Total Quality Management (TQM) models such as the Malcolm Baldrige National Quality Award in the USA and the more recent European Quality Award. Future revisions of the ISO 9000 series of quality management system standards will specifically require measure ment of defects. However, it is not easy for quality professionals or line managers to find examples of what they should measure and how to do it in their own particular functions in their own particular industries; case st\}dies always seem to refer to others."
One of the major challenges of science in the last few years of the second millennium is learning how to design materials which can fulfill specific tasks. Ambitious as it may be, the possibilities of success are not ne li ble provided that all the different expertises merge to overcome the limits of eXIsting disciplines and forming new paradigms science. The NATO Advanced Research Workshop on "Magnetic Molecular Materials" was organized with the above considerations in mind in order to determine which are the most appropriate synthetic strategies, experimental techniques of investigation, and theoretical models which are needed in order to develop new classes of magnetic materials which are based on molecules rather than on metallic or ionic lattices. Why molecules? The answer may be obvious: molecular chemistry in principle fine can tune the structures and the properties of complex aggregates, and nature already provides a large number of molecular aggregates which can perform the most disparate functions. The contributions collected in this book provide a rather complete view of the current research accomplishments of magnetic molecular materials. There are several different synthetic approaches which are followed ranging from purely organic to inorganic materials. Some encouraging successes have already been achieved, even if the critical temperatures below which magnetic order is observed still are in the range requiring liquid helium.
In the ten years since the scientific rationale for the design, synthesis and application of inorganic and organometallic polymers (IOPs) was first conceptualised, we have witnessed the first tentative exploration of IOPs as precursors to new materials, with efforts focusing on the design and synthesis of novel ceramic precursors. Developing expertise led to precursor studies combined with the characterisation of the transformation processes that occur when IOPs are converted to ceramic materials. Now at maturity, the science presented in this volume reveals the polymer precursor approach to materials synthesis together with examples of processing ceramic shapes for a range of mechanical properties, the development of sophisticated, noninvasive analytical techniques, and IOP design rationales relying on well-defined processing-property relationships. The production of multifunctional IOPs is described, providing ion conductivity, gas sensing, bioactivity, magnetic properties, etc., combined with processability. The existence of well-defined IOPs and the exquisite control that can be exerted on sol-gel systems now provide access to such a variety of mixed organic-organometallic and/or inorganic hybrid systems that their exploitation is likely to develop into an entirely new field of materials chemistry. Future exciting avenues of research are also being opened up with the advent of buckyballs, Met-Cars, dopable preceramics, rigid-rod organometallics, and molecular tinkertoys.
In this book, the problem of electron and hole transport is approached from the point of view that a coherent and consistent physical theory can be constructed for transport phenomena. Along the road readers will visit some exciting citadels in theoretical physics as the authors guide them through the strong and weak aspects of the various theoretical constructions. Our goal is to make clear the mutual coherence and to put each theoretical model in an appropriate perspective. The mere fact that so many partial solutions have been proposed to describe transport, be it in condensed matter, fluids, or gases, illustrates that we are entering a world of physics with a rich variety of phenomena. Theoretical physics always seeks to provide a unifying picture. By presenting this tour of many very inventive attempts to build such a picture, it is hoped that the reader will be inspired and encouraged to help find the unifying principle behind the many faces of transport.
Rapid advances are taking place in the application of density functional theory (DFT) to describe complex electronic structures, to accurately treat large systems and to predict physical and chemical properties. Both theoretical content and computational methodology are developing at a pace which offers researchers new opportunities in areas such as quantum chemistry, cluster science, and solid state physics. This volume contains ten contributions by leading scientists in the field and provides an authoritative overview of the most important developments. The book focuses on the following themes: determining adequate approximations for the many-body problem of electronic correlations; how to transform these approximations into computational algorithms; applications to discover and predict properties of electronic systems; and developing the theory. For researchers in surface chemistry, catalysis, ceramics and inorganic chemistry.
This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.
The activation of dioxygen by metal ions has both synthetic potential and biological relevance. Dioxygen is the cleanest oxidant for use in emission-free technologies to minimize pollution of the environment. The book gives a survey of those catalyst systems based on metal complexes which have been discovered and studied in the last decade. They activate molecular oxygen and effect the oxidation of various organic compounds under mild conditions. Much of the recent progress is due to a search for biomimetic catalysts that would duplicate the action of metalloenzymes. Mechanistic aspects are emphasized throughout the book. An introductonary chapter reviews the chemistry of transition metal dioxygen complexes, which are usually the active intermediates in the catalytic reactions discussed. Separate chapters are devoted to oxidation of saturated, unsaturated and aromatic hydrocarbons, phenols, catechols, oxo-compounds, phosphorus, sulfur and nitrogen compounds.
During the last decade there has been a renewed interest in under standing from a fundamental point of view the gasification of carbon. Basi cally there are two major issues in controlling the reactivity of carbon: i) reduction of the gasification rate of carbon materials in hostile environment ii) increase of the gasification rate in order to utilize carbonaceous compounds more effectively. Although these two objectives look somewhat contradictory, they are part of the general topics of understanding gasification reactivity of carbon. Refractory applications of carbon in furnace linings, seals and vanes, as well as the use of carbon-carbon or carbon-ceramic composites in struc tures able to withstand corrosion at high temperature require a better understanding of the fundamentals involved in carbon-oxidizing gas (02' CO, H 0) reactions. Furthermore a great interest of aluminium producers 2 2 is 10 extending the lifetime of carbon electrodes in alumina electrolysis which primarily depends on reducing their consumption rates by air or carbon dioxide. Proper control of gasification reactions is also of prime importance in manufacturing carbonaceous adsorbents like granular activated carbon clothes of high adsorption characteristics. The balance between increase of porosity and decrease in mechanical strength during activation is critical for developing new porous types of carbon materials in particular for carbon clothes and this can only be achieved by a careful control of the gasification reaction."
This book documents the proceedings of the symposium "Fundamentals and Applications of Anion Separations" held during American Chemical Society National Meeting in Chicago, Illinois, August 25-30, 200I. Nearly 40 papers devoted to discussions on anion separation related to fundamental research and applications were presented. The symposium, sponsored by Osram Sylvania, BetzDearbom, and the Separation Science & Technology Subdivision of the Industrial & Engineering Chemistry Division of the American Chemical Society was organized by Bruce A. Moyer, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Building. 4500S, Oak Ridge, TN 37831-6119, and Raj P. Singh, Chemicals and Powders R&D, Osram Sylvania, Chemical and Metallurgical Products Division, Towanda, PA 18848. It drew presenters from Australia, the Czech Republic, France, Germany, Japan, South Africa, Thailand, the United Kingdom, and the United States. Separations constitute an integral part of chemical industry. Chemical products typically originate in resources that must be concentrated and purified, chemically transformed, and subjected to fmal purification. Effluent streams from the processes must be treated to recycle reusable components and to remove environmentally harmful species. Some industrial processes are devoted to environmental cleanup after pollution has occurred. In addition, many analytical methods require a separation for preconcentration, or a separation may be an inherent part of the analysis itself. Micro separations occurring at membranes or interfaces are also related phenomena employed for ion sensing. Many species targeted for separation are naturally anionic. Although the standard separations techniques ofextraction, ion exchange, adsorption, precipitation, etc.
Selective Oxidation by Heterogeneous Catalysis covers one of the major areas of industrial petrochemical production, outlining open questions and new opportunities. It gives keys for the interpretation and analysis of data and design of new catalysts and reactions, and provides guidelines for future research. A distinctive feature of this book is the use of concept by example. Rather than reporting an overview of the literature results, the authors have selected some representative examples, the in-depth analysis of which makes it possible to clarify the fundamental, but new concepts necessary for a better understanding of the new opportunities in this field and the design of new catalysts or catalytic reactions. Attention is given not only to the catalyst itself, but also to the use of the catalyst inside the process, thus evidencing the relationship between catalyst design and engineering aspects of the process. This book provides suggestions for new innovative directions of research and indications on how to reconsider the field of selective oxidation from different perspectives, outlining that is not a mature field of research, but that new important breakthroughs can be derived from fundamental and applied research. Suggestions are offered on how to use less conventional approaches in terms of both catalyst design and analysis of the data. |
![]() ![]() You may like...
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,734
Discovery Miles 77 340
Classical and Modern Engineering Methods…
Abram Dorfman
Hardcover
Micro and Nano Flow Systems for…
Michael W. Collins, Carola S Koenig
Paperback
R3,476
Discovery Miles 34 760
Gifted Education in Asia - Problems and…
David Yun Dai, Ching Chih Kuo
Hardcover
R3,062
Discovery Miles 30 620
|