![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
There are only few topics in organometallic chemistry, which have stimulated research activities in as many areas, as transition-metal carbene (alkylidene) complexes. About 25 years after the first planned synthesis of a carbene complex in E.O. Fischer's laboratory in Munich the NATO Advanced Research Workshop on Transition-Metal Carbene Complexes was the first meeting which, brought together scientists from different disciplines to discuss inorganic, organic, theoretical structural catalysis-related aspects of metal carbene chemistry. The 70th birthday of Professor E.O. Fischer was a good occasion for this enterprise. The organizers of the meeting (K.D. Dotz, Marburg; F.R. KreiBl, Munchen; U. Schubert, Wurzburg) were encouraged by the fact that most of the leading scientists in this area were able to participate in the workshop. The very high standard of the contributions is reflected in this book, which contains papers from the majority of the participants. The Proceedings show the state of the art in metal carbene chemistry and will hopefully be a landmark in the development of this area of chemistry. Generous financial support for the workshop and for the preparation of this book was provided by the Scientific Affairs Division of NATO and some companies. The organizers also acknowledge the efforts of the staff of the Bildungs zentrum der Hans-Seidel-Stiftung in Wild bad Kreuth for creating a pleasant and stimulating atmosphere during the conference."
In the first contribution to this volume we read that the world-wide production of single crystal silicon amounts to some 2000 metric tons per year. Given the size of present-day silicon-crystals, this number is equivalent to 100000 silicon-crystals grown every year by either the Czochralski (80%) or the floating-zone (20%) technique. But, to the best of my knowledge, no coherent and comprehensive article has been written that deals with "the art and science," as well as the practical and technical aspects of growing silicon crystals by the Czochralski technique. The same could be said about the floating-zone technique were it not for the review article by W. Dietze, W. Keller and A. Miihlbauer which was published in the preceding Volume 5 ("Silicon") of this series (and for a monograph by two of the above authors published about the same time). As editor of this volume I am very glad to have succeeded in persuading two scien tists, W. Zulehner and D. Huber, of Wacker-Chemitronic GmbH - the world's largest producer of silicon-crystals - to write a comprehensive article about the practical and scientific aspects of growing silicon-crystals by the Czochralski method and about silicon wafer manufacture. I am sure that many scientists or engineers who work with silicon crystals -be it in the laboratory or in a production environment - will profit from the first article in this volume."
The decision of Springer-Verlag to publish this book in English came as a pleasant surprise. The fact is that I started writing the first version of the book back in 1978. I wished to attract attention to potentialities inherent in selected-area electron diffraction (SAED) which, for various reasons, were not being put to use. By that time, I had at my disposal certain structural data on natural and synthetic minerals obtained using SAED and high-resolution electron microscopy (HREM), and this stimulated my writing this book. There were several aspects concerning these data that I wished to emphasize. First, it was mostly new and understudied minerals that possess the peculiar structural features studied by SAED and HREM. This could interest mineralogists, crystallo chemists, and crystallographers. Second, the results obtained indi cated that, under certain conditions, SAED could be an effective, and sometimes the only possible, method for structure analysis of minerals. This inference was of primary importance, since fine dispersion and poor crystallinity of numerous natural and synthe tic minerals makes their structure study by conventional diffrac tion methods hardly possible. Third, it was demonstrated that in many cases X-ray powder diffraction analysis of dispersed miner als ought to be combined with SAED and local energy dispersion analysis. This was important, since researchers in structural min eralogy quite often ignored, and still ignore even the simplest in formation which is readily available from geometrical analysis of SAED patterns obtained from microcrystals."
45 years after the discovery of transition metals and organometallics as cocatalysts for the polymerization of olefins and for organic synthesis, these compounds have not lost their fascination. The birthday of Karl Ziegler, the great pioneer in this metalorganic catalysis, is now 100 years ago. Polyolefins and polydienes produced by Ziegler-Natta catalysis are the most important plastics and elastomers. New impulses for the polymerization of olefins have been brought about by highly active metallocenes and other single site catalysts. Just by changing the ligands of the organometallic compounds, the structure of the polymers produced can be tailored in a wide manner. In invited lectures and posters, relevant aspects of the metalorganic catalysts for synthesis and polymerization are discussed in this book. This includes mechanism and kinetics, stereochemistry, material properties, and industrial applications.
Chemical Synthesis: Gnosis to Prognosis (XTUllKtl ~uv8eoTr ana TT) rVWOT) OTT) npaYVWOT)) " . . . . other things being equal, that field has the most merit which contributes most heavily to, and illuminates most brightly, its neighbouring scientific disciplines[l] One hundred scientists, a blend of students, industrialists, and academics from twenty countries gathered to circumscribe, understand, and elaborate this topic in the magical setting of Ravello, Italy. The mandate of this workshop? To survey existing knowledge, assess current work, and discuss the future directions of chemical synthesis as it impinges on three exciting interdisciplinary themes of science in the 1990's: bioactive molecules, man-made chemical materials, and molecular recognition. This tempting but inexact menu summoned diverse students and scientists who wished to seriously reflect upon, dissect, and eject ideas and own experiences into open debate on this topic, which is at a crossroad in internal evolution and impact on the life and material sciences. The group arrived from many directions and in various forms of transportation, matters soon forgotten, when it found itself in the village which nurtured Wagner's inspiration and set to work immediately to ponder the question which has received extensive thought, prediction, and caveat from illustrious chemists over a period of time [2], two of which, to the delight of all, in presence among the Lectures.
This high quality database for the organic, geo, and/or petrochemist features: 1,100 mass spectra of well defined compounds; information including mass spectra, chemical structure, chemical name, molecular formula, molecular weight (nominal mass), base peak, reference, and measurement condition; and, chemical structures elucidated, if necessary, by a variety of techniques including NMR spectroscopy and single crystal X ray structure analysis.
to the American Edition We are pleased that our modest work, published some time ago in Russian in Moscow* and which attracted the attention of polymer specialists,t will now be available to the EngJish- speaking audience of scientists - chemists, physicists, and technologists engaged in creating new types of polymer materi- als for modern technology and working on the fundamental prob- lems of the solid-state physics and structure of polymer- due to the initiative of Plenum Press. In polymer science, the 1980s were marked by the birth of a new field and a new scientific trend related to the dis- covery and study of a previously unknown class of polymers thermotropic liquid-crystalline polymers - and the further development of the fundamental theoretical concepts of the liquid-crystalline (mesomorphic) state of macromolecular com- pounds. This state is a phase state in thermodynamic equi- librium characterized by the anisotropy of the structure and properties as a result of one-dimensional or two-dimensional ordering. Such systems have an ordered but simultaneously labile structure which can easily be altered by mechanical, electrical, or magnetic fields; the polymer system then acquires unique physical and optical properties. These prop- erties, which are acquired in the liquid-crvstalline state, are then fixed in the solid at the operating temperatures. *N. A. Plate and V. P. Shibaev. Comb-Shaped Polymers and Li- quid Crystals [in RussianJ. Khimiya, Moscow (1980). tSee the review of this book by H. Mark in J. Polym. Sci. Polym. Lett. Ed. , 20, 139 (L982).
Metal complexes play important roles as catalysts or other participants in synthetic and biological reactions. Substrates and sometimes attacking reagents also are activated through coordination with metal atoms or ions. In these events the natures not only of the central metals but also of ancillary ligands exert important influences on the stability and reactivity of the coordinated substrates. A ligand in general can adopt various coordination modes depending on its chemical environment, thus functioning as a probe. The number of coordination modes increases with increasing complexity of the ligand. In this book it is shown that even the simplest mono- and diatomic ligands such as H, CO, and N2 exhibit a variety of coordination modes, which are related to their reactions. The thiocyanate anion is taken up as a representative of the triatomic ambidentate ligands, and factors influencing the preferences for N- und S-bonding are summarized. Coordination chemistry of ss-dicarbonyl compounds is a highlight of this book. Acetylacetone, one of the most familiar Werner ligands, is shown to favor -carbon and n-allylic bonding in many instances. Its versatile behaviour in changing coordination modes is revealed."
Some 20 years ago, I was privileged to share in writing a book on the descriptive chemistry of the 4d, 5d, 4f and 5f metals that included these eight elements within its compass (S.A. Cotton and F.A. Hart, The Heavy Transition Elements, Macmillan, 1975). This volume shares the same aim of covering the descriptive chemistry of silver, gold and the six platinum metals in some detail at a level suitable for advanced undergraduate and postgraduate study. It does not attempt to be a comprehensive treatise on the chemistry of these metals. It attempts to fill a slot between the general text and the in-depth review or monograph. The organometallic chemistry is confined to a-bonded com pounds in normal oxidation states; compounds with IT-bonding ligands are generally excluded. Their inclusion would have increased the length of the book considerably and, moreover, their recent chemistry has been extensively and expertly reviewed in the new Comprehensive Organometallic Chemistry, II, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995."
In recent years many research workers have turned their attention to the quantitative characterization of complex compounds and reactions of complex-formation in solution. Instability constants characterize quantitatively the equili bria in solutions of complex compounds and are extensively used by chemists of widely-varying specialities, in analytical chemistry, electrochemistry, the technology of non-ferrous and rare metals, etc., for calculations of various kinds. Despite the wealth of numerical data, no reasonably full coliection of instability constants of complex compounds has been made until now. The various individual collections of data are far from complete and in most cases omit references to the source materials. Moreover, the present state of the chemistry of complex compounds most urgently demands the complete systematization of data on instability constants and an extension of work in this field which would take advantage of the latest physico-chemical methods. The present work contains instability constants for 1,381 complex compounds. We have considered it convenient to preface the summary of the instability constants with an introductory section of a general theoretical character. This section deals with methods for the calculation of instability constants from experimental data, the influence of external conditions, such as temperature and ionic strength, on the stability of com plexes, and the principal factors determining the stability of complex compounds in aqueous solution. (vii) PREFACE In compiling the summary we have used the original litera ture and abstracts for the most part up to 1954, and some work published in 1955-1956."
In the last twenty years the literature on the processes of ionic polymerization has reached such a level that there is not a single question which is not covered by the information contained in the many monographs, reference books, and textbooks in this field. It is easy for the interested reader to find sources for in-depth study, for a superficial acquaintance with the fundamentals of the subject or with the general features of these processes. At the same time the field is being continually enriched by new facts which have not only broadened the data base but which influence existing concepts on the mechanisms of these reactions. Such influences often touch the very foundations of these concepts, i. e., they go beyond simple descriptions of the structure of the pre-reaction states or earlier schemes. It is therefore appropriate to attempt a critical appraisal of the modern views on the mechanisms of formation of macro molecules in ionic systems which envisages, so far as is possible, the differentiating of fundamental and hypothetical conclusions or concepts. With this in mind we have preferred to address ourselves to the reader who is already quite well acquainted with the general litera ture. This has allowed us to dispense with detailed introductions to the questions discussed and to limit ourselves to brief comments on the fundamentals of the subject."
This volume contains the Proceedings of the NATO Advanced Research Workshop on "The Chemical Physics of Fullerenes 10 (and 5) Years Later," which was included in the program of the Enrico Fermi School and held in Varenna, Italy, on June 12-16, 1995. The occasion of the workshop was the lOth birthday of Coo, discovered in molecular beams in the summer of 1985, and the quasi simultaneous 5th anniversary of the synthesis of solid Coo. The motivation, however, was not the celebration of such events, rather the need for a realistic diagnosis of the current situation of fullerene research. The best solution for a constructive discussion was to gather in one place the protagonists of the fullerene adventure from the early discoveries to the present. The NATO Science Committee and the Italian Physical Society have made it possible through their generous financial support and organizational aid, which I wish to acknowledge with special gratitude. Buckminsterfullerene Coo has driven a line of research which, especially after the 1990 discovery, had been considered extremely promising both from the chemistry and material science viewpoints. In spite of this, very recently the funding and support have strongly decreased. Several hopes have been frustrated, and especially that of solid state physicists who hoped to come up with fullerene-based high-Tc superconductors.
This volume contains the fourteen papers presented at the NATO-sponsored Ad vanced Research Workshop on the 'Status and Future Developments in the Study of Transport Properties' held in Porto Carras, Halkidiki, Greece from May 29 to May 31, 1991. The Workshop was organised to provide a forum for the discussion among prac titioners of the state-of-the-art in the treatment of the macroscopic, non-equilibrium properties of gases. The macroscopic quantities considered all arise as a result of the pairwise interactions of molecules in states perturbed from an equilibrium, Maxwellian distribution. The non-equilibrium properties of gases have been studied in detail for well over a century following the formulation of the Boltzmann equation in 1872. Since then the range of phenomena amenable to experimental study has expanded greatly from the properties characteristic of a bulk, non-uniform gas, such as the viscosity and thermal conductivity, to the study of differential scattering cross-sections in molecular beams at thermal energies, to studies of spectral-line widths of individual molecules and of Van der Waals complexes and even further. The common thread linking all of these studies is found in the corresponding theory which relates them all to the potential energy function describing the interaction of pairs of molecules. Thus, accompanying the experimental development there has been a corresponding improvement in the theoretical formulation of the quantities characterising the various phenomena."
Nanocrystalline materials are three-dimensional ultrafine, polycrystalline microstructures. They give rise to interesting and useful chemical and physical-size effects. This book describes the development of a method of synthesizing chemical vapor for the production of nanocrystalline ceramic powders. The development of the microstructure during sintering is studied and the influence of the synthesis parameters on the structure and properties of the nanocrystalline ceramics from the atomic to the microstructural level is investigated. The emerging unified view, from powder synthesis and ceramic processing to structural characterization and determination of properties, provides a detailed understanding of the materials and enables better quality control of the end products.
In recent years several improvements have been made in the manufacturing of resistive, superconducting and hybrid mag nets. Condensed matter physicists are nowadays doing ex periments in steady magnetic fields of up to 30 Tesla. But the field homogenity {/B}, required in a volume of the order of a 3 few cm is usually several orders of magnitude less severe than the one which is needed for high resolution NMR. Over the last 30 years, with each generation of new high resolution NMR spectrometers, from 100 MHz up to 600 MHz, taking advan tage of the increase in sensitivity and resolution, new areas of research have been opened in chemistry, physical chemistry and biochemistry. The generation of the 20 Tesla supercon ducting magnets is coming. Thus one may seriously start to consider high resolution NMR at 1 GHz. The purpose of this volume is to examine some of the advantages which can be obtained at such high frequencies and some of the problems we shall be facing. An important aspect of NMR at high field which is not presented in this volume concerns the design of the magnet. The building of a superconducting magnet, producing a field 10 3 higher than 20 T, with a field homogeneity IlB/B 10-, in a cm volume still remains today in 1990 a major challenge. Grenoble, France J. B. Robert Guest-Editor Professor J. B. Robert Service National des Champs Intenses B. P."
Fundamental QSARs for Metal Ions describes the basic and essential applications of quantitative structure-activity relationships (QSARs) for regulatory or industrial scientists who need to predict metal ion bioactivity. It includes 194 QSARs that have been used to predict metal ion toxicity and 86 QSARs that have been used to predict metal ion bioconcentration, biosorption, and binding. It is an excellent sourcebook for academic, industrial, and government scientists and policy makers, and provides a wealth of information on the biological and chemical activities of metal ions as they impact health and the environment. Fundamental QSARs for Metal Ions was designed for regulatory and regulated organizations that need to use QSARs to predict metal ion bioactivity, as they now do for organic chemicals. It has the potential to eliminate resources to test the toxicity of metal ions or to promulgate regulations that require toxicity testing of metal ions because the book illustrates how to construct QSARs to predict metal ion toxicity. In addition, the book: Provides a historical perspective and introduction to developing QSARs for metal ions Explains the electronic structures and atomic parameters of metals essential to understanding differences in chemical properties that influence cation toxicity, bioconcentration, biosorption, and binding Describes the chemical properties of metals that are used to develop QSARs for metal ions Illustrates the descriptors needed to develop metal ion-ligand binding QSARs Discusses 280 QSARs for metal ions Explains the differences between QSARs for metal ions and Biotic Ligand Models Lists the regulatory limits of metals and provides examples of regulatory applications Illustrates how to construct QSARs for metal ions Dr. John D. Walker is the winner of the 2013 SETAC Government Service Award.
The absence of a book dealing with rubber processing has been apparent for some time and it is surprising that a straightforward text has not been produced. However, this book goes far beyond the scope of a simple technical approach and deals with the full spectrum of activities which lead to successful and profitable product manufacture. The need to deliver a product to a customer at the right time, at the right cost, and at the right quality is a basic premise on which the book is based. The increasingly stringent demands of customers for products that can be introduced directly into an assembly or production line without goods inwards inspection, are placing increasing pressures on the manufacturer. As a result, it is becoming essential to achieve and sustain product quality and consistency, by the monitoring and control of manufacture, at a level which renders all products saleable. The book has been written to satisfy the needs of practitioners in the rubber industry and is certainly not another descriptive text which is only read for interest when more important matters are not pressing. My close cooperation with Philip K. Freakley during the writing of the book has resulted in the incorporation of many of the viewpoints and methods which I have developed and refined during more than 38 years in the rubber industry."
Well tailored metal catalysts are catalysts of the new generation resulting from scientific development at the boundary between homogeneous and hetero- geneous chemistry. The main factors involved in making tailored metal catalysts are not those of traditional impregnation in which the chemistry is in general unknown and ill-defined, or of simple ion exchange which involves long-range forces with little control on the local structure through definite and special bond direction. Tailored Metal Catalysts thus has a rather different emphasis from normal review publications in the field of catalysis. Here we concentrate more on the distinct surface chemistry and catalytic properties of important established materials with well-characterized active structures or precursors, although at the same time providing a systematic presentation of relevant data. Many pioneering works have been undertaken in the field of tailored metal catalysts since the early research on polymer-attached homogeneous metal complexes by the British Petroleum Company Ltd. and the Mobil Oil Corpora- tion around 1969; transition metal complexes attached on polymers by Grubbs (1971), Heinemann (1971), Manassen (1971), Pittman (1971), Bursian et al. (1972), Kagan (1973), Bailar (1974); transition metal complexes attached on inorganic oxides by Allum et al. (1972), Ballard (1973), Candlin and Thomas (1974), Murrell (1974), Yermakov (1974); metal carbonyls/polymers by Moffat (1970); metal carbonyls/inorganic oxides by Parkyns (1965), Davie et al. (1969), Banks et al. (1969), Howe (1973), Burwell (1975); metal carbonyl clusters/ polymers by Colhnan (1972); metal carbonyl clusters/inorganic oxides by Robertson and Webb (1974), Anderson (1974), Smith et al. (1975).
The past decade has seen a dramatic acceleration of activity and interest in phenomena surrounding lanthanide and actinide organo metallic compounds. Around the world, active research in organo-f element synthesis, chemistry, catalysis, crystallography, and quantum chemistry is in progress. This activity has spanned a remarkably wide range of disciplines, from synthetic/mechanistic inorganic and organic chemistry to radiochemistry, catalytic chemistry, spectroscopy (vibra tional, optical, magnetic resonance, photoelectron, Mossbauer), X-ray and neutron diffraction structural analysis, as well as to crystal field and molecular orbital theoretical studies at the interface of chemistry and physics. These investigations have been motivated both by fundamental and applied goals. The evidence that f-element organo metallic compounds have unique chemical and physical properties which cannot be duplicated by organometallic compounds of d-block elements has suggested many new areas of endeavor and application. For these reasons, a great many scientists felt the need for some international forum devoted exclusively to the subject of lanthanide and actinide organometallic compounds. In September of 1978, a NATO Advanced Study Institute entitled, "Organometallics of the f-Elements," was held at the SOGESTA Conference Center near Urbino, Italy. It was the universal feeling of the partic ipants that this first meeting was a great success and that vital international communication and collaboration had been stimulated. The principal lectures at this Institute were published by Reidel in 1979 as part of the NATO ASI Monograph Series ("Organometallics of the f-Elements," T. J. Marks and R. D. Fischer, editors)."
Molecular magnetism is a new field of research dealing with the
synthesis and study of the physical properties of molecular
assemblies involving open-shell units. It is essentially
interdisciplinary, joining together organic, organometallic and
inorganic chemists, as well as theoreticians, physicists and
materials scientists.
Most publications on heavy metals and the environment have focused on environmental pathways and risks. The present book establishes a link between the environmental risks of heavy metals and the societal causes of the risks. Economic models, substance flow models and environmental fate and risk assessment models have been integrated into a single analytical framework that has been used to trace and understand the routes by which four heavy metals enter the economy, through to their final destination in the environment. The long-term impacts of the current metals management regime in the Netherlands have been used as a case study by which to assess the effectiveness of certain policy measures. Readership: Environmental scientists, especially those practising in the areas of ecological economics, industrial ecology, materials flow accounting and integrated environmental assessment. Environmental policy makers will also find the book an invaluable aid in their deliberations.
More than ten million poison gas' shells, mortar bombs, etc., lie hidden in Europe, many of them relics from World War I. Some were fired and failed to detonate, others were abandoned in old ammunition dumps. Most retain their load of chemical warfare (CW) agents. They are turned up daily in the course of farming and construction. Many European nations have permanent departments concerned with their collection and destruction. Old munitions, when discovered, are usually heavily corroded and difficult to identify. Is it a CW munition? Or an explosive? If CW, what agent does it contain? Once identified, one has to select a destruction method. Some of the methods that have been proposed are less than perfect, and are often complicated by the presence of extraneous chemicals, either mixed with the CW agents during manufacture or formed over decades in the ground. Of particular interest are the insiders' reports on the German CW programmes of both World Wars, and the current status of Russian chemical armaments.
Providing the quantum-mechanical foundations of chemical bonding, this unique textbook emphasizes key concepts such as superposition, degeneracy of states and the role of the electron spin. An initial, concise and compact presentation of the rudiments of quantum mechanics enables readers to progress through the book with a firm grounding. Experimental examples are included to illustrate how the abstract concepts are manifest in real systems.
Over the past 20 years aqueous organometallic catalysis has found applications in small- scale organic synthesis in the laboratory, as well as in the industrial production of chemicals with a combined output close to one million tons per year. Aqueous/organic two-phase reactions allow easy product-catalyst separation and full catalyst recovery which mean clear benefits not only in economic but also in environmental and green chemistry contexts. Instead of putting together a series of expert reviews of specialized fields, this book attempts to give a comprehensive yet comprehensible description of the various catalytic transformations in aqueous systems as seen by an author who has been working on aqueous organometallic catalysis since its origin. Emphasis is put on the discussion of differences between related non-aqueous and aqueous processes due to the presence of water. The book will be of interest to experts and students working in catalysis, inorganic chemistry or organic synthesis, and may serve as a basis for advanced courses. |
You may like...
Buy This Book - Studies in Advertising…
Mica Nava, Andrew Blake, …
Hardcover
R4,227
Discovery Miles 42 270
PowerShell, IT Pro Solutions…
William R. Stanek, William Stanek
Hardcover
R1,434
Discovery Miles 14 340
|