![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
Twenty years ago Tanabe and Sugano published the first ligand field energy diagrarns which are applicable to dN electronic configurations. These diagrams are limited in scope in that they can be used only for octahedral symmetry and for a limited number of terms. The present volume is an attempt to fill the gap by providing a reasonable nurober of complete and accurate ligand field energy diagrarns for dN configurations in the most commonly encountered symmetries. Despite their limited nature, the diagrarns of Tanabe and Sugano were exten sively used in the past in order to rationalize optical and luminescence spectra and to discuss various electronic properties of transition metal ions, their coordination compounds and solids. Moreover, Tanabe-Sugano diagrams have an established place in the theory of transition metal compounds and are included in most textbooks of inorganic and coordination chemistry. It is expected that the present diagrarns will be found useful for a similar purpose."
The development of "tailormade" electrode surfaces using electroactive polymer films has been one of the most active and exciting areas of electrochemistry over the last 15 years. The properties of these materials have been examined by a wide range of scientists from a variety of perspectives, and now electroactive polymer research is considered to be a reasonably mature area of research endeavor. Much is now understood about the fundamental mechanism of conduction in these materials. A wide range of electrochemical techniques may be used to probe the conductivity processes in these materials, and more recently, a number of in situ spectroscopic techniques have been used to further elucidate the structure of these materials. The in situ spectroscopies and allied techniques have also been used to obtain correlations between structure and redox activity. The applications found for electroactive polymers are many and varied, and range from thin film amperometric chemical and biological sensors, electrocatalytic systems, drug delivery devices, and advanced battery systems through to molecular electronic devices. The research literature on electroactive polymers is truly enormous and can daunt even the most hardened researcher. The vast quantity of material reported in the literature can also intimidate beginning graduate students. Hence the present book. The original idea for this book arose as a result of a series of lectures on chemically modified eiectrodes and electroactive polymers given by the writer to final-year undergraduates at Trinity College Dublin.
Water-based technology has undergone revolutionary changes during the past two decades. Interest in the properties and uses of water-based coatings, paints and inks has continued to grow since the establishment of the Clean Air Act of 1970. The present book is devoted to recent developments and trends in water-based coating and ink technology. This volume is divided in three broad catagories: (1) Additives and Water-based Coating/Ink Systems, (2) Surface Modifications and Wettability, and (3) Ink/Coating Formulations and Their characterization. The role of various additives to improve the performance and properties of water-based coatings with special reference to surface phenomena such as wettability, adhesion, surface energies, dispersion stability, particle size and size distribution are presented in these sections. This volume documents the proceedings of the International symposium on Surface Phenomena and Additives in Water-Based Coatings and Printing Technology sponsored by the 21st Annual Meeting of the Fine Particle Society (FPS). This meeting was held in San Diego, california, AUgust 21-25, 1990. The symposium upon which this volume is based was organized in four sessions emphasizing several basic and applied aspects of water-based coatings and printing technology. Major topics discussed include advances in water-based technology, water-based flexo and gravure inks, hydrophobically-modified cellulosic thickeners, organosilicones, uv curable silicone release coatings, surface characterization of Ti02 pigments, polymer substrates, flexographic plates and coating films, pigment wetting and dispersing agents, hydrotrope effect in emulsion polymers, film thickness control, particle size measurements, rheological properties, and statistically designed mixtures for ink formulations.
When we see a jumbo jet at the airport, we sometimes wonder how such a huge, heavy plane can fly high in the sky. To the extent that we think in a static way, it is certainly not understandable. In such a manner, dynamics yields behavior quite different from statics. When we want to prepare an iron nitride, for example, one of the most orthodox ways is to put iron in a nitrogen atmosphere under pressures higher than the dissociation pressure of the iron nitride at temperatures sufficiently high to let the nitrogen penetrate into the bulk iron. This is the way thermodynamics tells us to proceed, which requires an elaborate, expensive high-pressure apparatus, sophisticated techniques, and great efforts. However, if we flow ammonia over the iron, even under low pressures, we can easily prepare the nitride-provided the hydrogen pressure is sufficiently low. Since the nitrogen desorption rate is the determining step of the ammonia decomposition on the iron surface, the virtual pressure of nitrogen at the surface can reach an extremely high level (as is generally accepted) because, in such a dynamic system, the driving force of the ammonia decomposition reaction pushes the nitrogen into the bulk iron to form the nitride. Thus, dynamics is an approach considerably different from statics.
Phosphate Fibers is a singular detailed account of the discovery, chemistry, synthesis, properties, manufacture, toxicology, and uses of calcium and sodium calcium polyphosphate fibers. Author Edward J. Griffith-the inventor and developer of this safe, biodegradable material-takes a multidisciplinary approach to this subject, considering the social, legal, medical, and industrial issues surrounding the use of asbestos and other mineral fibers. This compelling study is a beneficial resource to both readers interested in mineral fibers as well as those who want to understand the complexities of bringing new substances into the modern marketplace.
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, and engineering, with length scales ranging from Angstromsup to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area ofcurrent interest and brings together leading experts to give an up-to-date discussion of their work and the work ofothers. Each article contains enough references that the interested reader can accesstherelevant literature. Thanks aregiven to the Center forFundamental Materials Research atMichigan State University forsupportingthis series. M.F. Thorpe, Series Editor E-mail: [email protected] EastLansing, Michigan, September, 1995 PREFACE This book records selected papers given at an interdisciplinary Symposium on Access in Nanoporous Materials held in Lansing, Michigan, on June 7-9, 1995. Broad interest in the synthesis of ordered materials with pore sizes in the 1.0-10 nm range was clearly manifested in the 64 invited and contributed papers presented by workers in the formal fields of chemistry, physics, and engineering. The intent of the symposium was to bring together a small number ofleading researchers within complementary disciplines to share in the diversity of approaches to nanoporous materials synthesis and characterization."
The Plenum Press series, Monographs in Inorganic Chemistry, is intended to fill an obvious need for high-level surveys of recent research in that area, particularly in matters which go beyond the traditional or classical bound aries of the subject. The study of n-bonding of hydrocarbon groups (and their derivatives) to metals is exactly that kind of subject, for it provides a new way of understanding the behavior of metals (which constitute four-fifths of all the chemical elements). In addition, n-bonding has expanded the intriguing area of organometallic chemistry threefold, bringing in all the transition metals, the lanthanides, and the actinides. So much has been discovered and developed in the area of n-bonded "complexes" of the metals that important new industrial processes based on such substances have been developed. A truly comprehensive review of all n-bonded compounds of the metals would now result in an impossibly large and expensive volume, and would require monthly revision. Instead, the present authors have wisely decided to write a survey which outlines the general aspects of preparation, properties, structure, reactions, and uses of such compounds-a survey which can serve as a textbook, but which can also lead the more experienced practitioner to the most advanced literature on the subject. They have clarified and condensed the subject by means of good organization and a liberal use of diagrams-features which will please the general reader."
Molecular clusters, in the broad sense that the term is commonly understood, today comprise an enormous class of species extending into virtually every important area of chemistry: "naked" metal clusters, transition metal carbonyl clusters, hydrocarbon cages such as cubane (C H ) and dodecahedrane (C H ), 8 8 20 20 organometallic cluster complexes, enzymes containing Fe S or MoFe S 4 4 3 4 cores, high polymers based on carborane units, and, of course, the many kinds of polyhedral borane species. So large is the area spanned by these diverse classes that any attempt to deal with them comprehensively in one volume would, to say the least, be ambitious-and also premature. We are presently at a stage where intriguing relationships between the various cluster families are becoming apparent (particularly in terms of bonding descriptions), and despite large dif ferences in their chemistry an underlying unity is gradually developing in the field. For example, structural changes occurring in Fe S cores as electrons are 4 4 pumped in and out, in some measure resemble those observed in boranes and carboranes. The cleavage of alkynes via incorporation into carborane cages and subsequent cage rearrangement, a sequence familiar to boron chemists, is a thermodynamically favored process which may be related to the behavior of unsaturated hydrocarbons on metal surfaces; analogies of this sort have drawn attention from theorists and experimentalists."
Electrochemical synthesis of inorganic compounds is a relatively unknown field. The successful, large industrial processes, such as chlorine-caustic production, are well known, but the large number of other compounds that have been synthesized electrochemically are much less appreciated, even by electrochemists and inorganic chemists. The last comprehensive book on this subject was published in the 1930's and no modern review or summary of the whole field is in existence. But the field is in no way dormant, as attested by the large number of publications, undiminished throughout the years, describing new syntheses and improvements of old ones. Indeed, it can be expected that practical applications of electrochemical inor ganic syntheses will increase in the future as an increasing portion of our energy will be available in electrical form. Electrochemical processes have important advantages over chemical routes: often the selectivity of the reaction can be better controlled through the use of potential control at the electrode, and the creation of environmen tally harmful waste material can be avoided more easily since one is using the purest reagent - the electron. In addition to development of new synthetic routes, many old ones, which were found to be un economical in the past, are worth reexamining in light of the recent considerable advances in cell design principles, materials of construc tion, and electrode and separator materials, together with our im proved understanding of electrode reactions and electrocatalysis. It is in the hope of accelerating this process that this bibliography is published."
to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitively expensive. There are few chemical-or oil-based material items in modem society that do not depend in some way on a catalytic stage in their manufacture. Apart from manu facturing processes, catalysis is finding other important and ever-increasing uses; for example, successful applications of catalysis in the control of pollution and its use in environmental control are certain to increase in the future. The commercial importance of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists, including chemists, physicists, chemical engineers, and material scientists. Increas ing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recently as sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 1950s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth. In view of this situation, we felt there was a need for a collection of monographs, each one of which would deal at an advanced level with a selected topic, so as to build a catalysis reference library.
Hydroxyapatite is the structural prototype of the main inorganic constituent of bone and teeth and, together with fluorapatite, is also one of the principal minerals in commercial phosphate ores. The adsorption characteristics and surface chemistry of hydroxyapatite are important in understanding the growth, dissolution and adhesion mechanisms of bone and tooth tissues and in elucidating the factors in mineral beneficiation such as floation and flocculation. This volume essentially documents the proceedings of the symposium on the same topic held at the American Chemical Society Meeting in Kansas City, MO, September 12-17, 1982. It includes a few papers which were not presented at the symposium but does not comprise the entire program. This volume provides, on a limited scale, a multidisciplinary overview of current work in the field of adsorptive behavior and surface chemistry of hydroxyapatite and includes certain review articles. There are two papers each on adsorption, adsorption and its effects on crystal growth or dissolution kinetics, effects of electrochemical parameters on solubility and adsorption, and newer physical methods (exoemission and high-resolution NMR) of examining hydroxyapatite surface. There is one paper each on structure modelling of apatite surface based on octacalcium phosphate interface and on biodegradation of sintered hydroxyapatite.
During the past fifteen years commercial interest in compounds containing carbon fluorine bonds has burgeoned beyond all expectations, mainly owing to business opportunities arising from work on biologically active fluoroorganics-particularly agrochemicals, the relentless search for new markets for fluoropolymers and fluoro carbon fluids, developments in the field of medical diagnostics, and the drive to find replacements for ozone-depleting CFCs and Halon fire-extinguishing agents. Judging the situation to warrant the publication of a comprehensive collection of up-to-date reviews dealing with commercial organofluorine compounds within a single volume of manageable size (and hence reasonable cost), we were delighted to be invited by Plenum Publishing Corporation to produce a suitable book. In order to provide an authentic and wide-ranging account of current commercial applications of fluoroorganic materials, it clearly was necessary to assemble a sizeable team of knowledgeable contributing authors selected almost entirely from industry. Through their efforts we have been able to produce an almost complete coverage of the modem organofluorochemicals business in a manner designed to attract a reader ship ranging from experts in the field, through chemists and technologists currently unaware of the extent of industrial involvement with fluoroorganics, to students of applied chemistry. Promised chapters dedicated to perfluoroolefin oxides and 18F labeling of radiopharmaceuticals failed to materialize. This is somewhat unfortunate in view of our aim to achieve comprehensive coverage of the subject.
Some have predicted that the coming several decades will be the decades of "biotechnology," wherein cancer, birth defects, life span increases, cosmetics, biodegradation, oil spills and exploration, solid waste disposal, and almost every aspect of our material life will be affected by this new area of science. There will also be an extension of emphasis on giant molecules: DNA, enzymes, polysaccharides, lignins, proteins, hemoglobin, and many others. Biotechnology has been defined in various ways. In one sense, this field is older than human history and references to the human use of biotechnology-derived materials can be found in the oldest human writings, such as the Bible. In this book, biotechnology refers to the direct usage of naturally occurring materials or their uses as a feedstock, including the associated biological activities and applications of these materials. Bioactive polymers, on the other hand, are polymers which exert some type of activity on living organisms. These polymers are used in agriculture, controlled release systems, medicine and many other areas. The papers in this book describe polymers which essentially combine features of biotechnology and bioactivity.
Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
In this reference, the author thoroughly reviews the current state of condensed phosphate chemistry. A unique feature of this volume is an examination of the recent developments in X-ray structural techniques, reporting on fundamental results obtained through their use. Enhanced by comprehensive tables reporting crystal data, chapters identify and characterize more than 2,000 compounds. Additional features include a concise survey of the historical development of condensed phosphate chemistry; the presently accepted classification system; a review of each family of condensed phosphates and much more.
This book was planned and written with one central goal in mind: to demonstrate that statistical thermodynamics can be used successfully by a broad group of scientists, ranging from chemists through biochemists to biologists, who are not and do not intend to become specialists in statistical thermodynamics. The book is addressed mainly to gradu ate students and research scientists interested in designing experiments the results of which may be interpreted at the molecular level, or in interpreting such experimental results. It is not addressed to those who intend to practice statistical thermodynamics per se. With this goal in mind, I have expended a great deal of effort to make the book clear, readable, and, I hope, enjoyable. This does not necessarily mean that the book as a whole is easy to read. The first four chapters are very detailed. The last four become progressively more difficult to read, for several reasons. First, presuming that the reader has already acquired familiarity with the methods and arguments presented in the first part, I felt that similar arguments could be skipped later on, leaving the details to be filled in by the reader. Second, the systems themselves become progressively more com plicated as we proceed toward the last chapter.
For several years, I have been responsible for organizing and teaching in the fall a short course on "Fundamentals of Adhesion: Theory, Practice, and Applications" at the State University of New York at New Paltz. Every spring I would try to assemble the most pertinent subjects and line up several capable lecturers for the course. However, there has always been one thing missing-an authoritative book that covers most aspects of adhesion and adhesive bonding. Such a book would be used by the participants as a main reference throughout the course and kept as a sourcebook after the course had been completed. On the other hand, this book could not be one of those "All you want to know about" volumes, simply because adhesion is an interdisciplinary and ever-growing field. For the same reason, it would be very difficult for a single individual, especially me, to undertake the task of writing such a book. Thus, I relied on the principle that one leaves the truly monumental jobs to experts, and I finally succeeded in asking several leading scientists in the field of adhesion to write separate chapters for this collection. Some chapters emphasize theoretical concepts and others experimental techniques. In the humble beginning, we planned to include only twelve chapters. However, we soon realized that such a plan would leave too much ground uncovered, and we resolved to increase the coverage. After the book had evolved into thirty chapters, we started to feel that perhaps our mission had been accomplished.
The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantial support from the Scientific Affairs Division of the North Atlantic Treaty Organization, the Netherlands' Ministry of Education and Science, the Foundation Physica and the Nether lands' Physical Society."
Over the last several years, the field of materials science has witnessed an explosion of new, advanced materials. They encompass many uses and include superconductors, alloys, glasses, and catalysts. Not only are there quite a number of new enhies into these generic classes of materials, but the materials themselves represent a wide array of physical forms as well. Bulk materials, for example, are being synthesized and applica tions found for them, while still other materials are being synthesized as thin films for yet still more new (and in some cases, as yet unknown) applications. The field continues to expand with (thankfully ) no end in sight as to the number of new possibilities. As work progresses in this area, there is an ever increasing demand for knowing not only what material is formed as an end product but also details of the route by which it is made. The knowledge of reaction mechanisms in their synthesis many times allows a researcher to tailor a preparative scheme to either arrive at the final product in a purer state or with a better yield. Also, a good fundamental experimental knowledge of impuri ties present in the final material helps the investigator get more insight into making it."
to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.
Reviewing over 100 chemical and physical methods for analysis of polymers, Manual of Plastics Analysis is so detailed and comprehensive that chemists can apply the methods - many previously unpublished - directly from the book. A genuine laboratory manual, the volume supplies prodigious amounts of up-to-date information on all types of polymers, polymer additives, volatiles, adventitious impurities, monomers, metals, and pigments. Extremely well-suited for classroom teaching, research, or industrial applications, the book contains numerous tables and figures, as well as many chemical equations illustrating its analytical techniques.
The main objective of this book is to systematically describe the basic principles of the most widely used techniques for the analysis of physical, structural, and compositional properties of solids with a spatial resolution of approxi mately 1 ~m or less. Many books and reviews on a wide variety of microanalysis techniques have appeared in recent years, and the purpose of this book is not to replace them. Rather, the motivation for combining the descriptions of various mi croanalysis techniques in one comprehensive volume is the need for a reference source to help identify microanalysis techniques, and their capabilities, for obtaining particular information on solid-state materials. In principle, there are several possible ways to group the various micro analysis techniques. They can be distinguished by the means of excitation, or the emitted species, or whether they are surface or bulk-sensitive techniques, or on the basis of the information obtained. We have chosen to group them according to the means of excitation. Thus, the major parts of the book are: Electron Beam Techniques, Ion Beam Techniques, Photon Beam Techniques, Acoustic Wave Excitation, and Tunneling of Electrons and Scanning Probe Microscopies. We hope that this book will be useful to students (final year undergrad uates and graduates) and researchers, such as physicists, material scientists, electrical engineers, and chemists, working in a wide variety of fields in solid state sciences.
Mass spectrometry underwent dramatic changes during the decade of the 1980s. Fast atom bombardment (F AB) ionization, developed by Barber and coworkers, made it possible for all mass spectrometry laboratories to analyze polar, highly functionalized organic molecules, and in some cases ionic, inorganic, and organometallic compounds. The emphasis of much of this work was on molecular weight determination. Parallel with the development of ionization methods (molecular weight mass spectrometry) for polar biological molecules, the increased mass range of sector and quadrupole mass spectrometers and the development of new instruments for tandem mass spectrometry fostered a new era in structural mass spectrometry. It was during this same period that new instrument technologies, such as Fourier transform ion cyclotron resonance, radio frequency quadrupole ion trap, and new types of time-of-flight mass spectrometers, began to emerge as useful analytical instruments. In addi tion, laser methods useful for both sample ionization and activation became commonplace in almost every analytical mass spectrometry laboratory. In the last 5 years, there has been explosive growth in the area of biological mass spectrometry. Such ionization methods as electrospray and matrix-assisted laser desorption ionization (MALDI) have opened new frontiers for both molecular weight and structural mass spectrometry, with mass spectrometry being used for analysis at the picomole and even femto mole levels. In ideal cases, subfemtomole sample levels can be successfully analyzed. Sample-handling methods are now the limiting factor in analyz ing trace amounts of biological samples. |
![]() ![]() You may like...
Applying Cognitive Grammar in the…
Jakub Bielak, Miroslaw Pawlak
Hardcover
Reliable and Energy Efficient Streaming…
Anup Kumar Das, Akash Kumar, …
Hardcover
R1,524
Discovery Miles 15 240
The Next Era in Hardware Security - A…
Nikhil Rangarajan, Satwik Patnaik, …
Hardcover
R2,407
Discovery Miles 24 070
Dead in the Water - Global Lessons from…
Bruce Shoemaker, William Robichaud
Hardcover
R2,391
Discovery Miles 23 910
|