![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. Mat Lab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.
Living beings require constant information processing for survival. In cells, information is being processed and propagated at various levels, from the gene regulatory network to chemical pathways, to the interaction with the environment. How this is achieved and how information is coded is still poorly understood. For example, what a cell interprets as information in the temporal level of an mRNA and what is interpreted as noise remains an open question. Recently, information theoretical methods and other tools, developed in the context of engineering and natural sciences, have been applied to study diverse biological processes. This book covers the latest findings on how information is processed in various biological processes, ranging from information processing and propagation in gene regulatory networks to information processing in natural language. An overview is presented of the state-of-the-art in information processing in biological systems and the opinion of current leaders in this research field on future research directions.
Enzyme kinetics, binding kinetics and pharmacological dose-response curves are currently analyzed by a few standard methods. Some of these, like Michaelis-Menten enzyme kinetics, use plausible approximations, others, like Hill equations for dose-response curves, are outdated. Calculating realistic reaction schemes requires numerical mathematical routines which usually are not covered in the curricula of life science. This textbook will give a step-by-step introduction to numerical solutions of non-linear and differential equations. It will be accompanied with a set of programs to calculate any reaction scheme on any personal computer. Typical examples from analytical biochemistry and pharmacology can be used as versatile templates. When a reaction scheme is applied for data fitting, the resulting parameters may not be unique. Correlation of parameters will be discussed and simplification strategies will be offered.
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system's functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system's information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus
This book sheds light on how dysregulated organelle functions contribute to the pathology and progression of human diseases. To offer a broad perspective, they discuss basic, translational, and clinical aspects across scales, from molecules to cells, tissues and organisms. Rather than providing a comprehensive introduction to the field, the authors focus on recent advances in organelle research, with each chapter inviting readers to consider today's key questions in the respective field. This book reviews the endoplasmic reticulum, Golgi Appartus, Lysosomes and other membrane-enclosed organelles, demonstrating how their dysregulated function contributes to various pathologies. The chapters not only offer a platform for new perspectives but also stimulate further investigations. Given the translational nature of this subject, this book is a valuable resource for physiologists and clinicians alike. Chapter "Lipid Droplets in Cancer" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
While most books contain some information on related sensors topics, they are limited in their scope on biomedical sensors. Sensors in Biomedical Applications: Fundamentals, Design, Technology and Applications is the first systematized book to concentrate on all available and potential sensor devices of biomedical applications! Sensors in Biomedical Applications presents information on sensor types in a comprehensive and easy to understand format. The first four chapters concentrate on the basics, lending an understanding to operation and design principles of sensor elements. Introduced are sections on: basic terms, sensor technologies, sensor structure and sensing effects. The next three chapters describe application possibilities: physical sensors, sensors for measuring chemical qualities and biosensors. Finally, a chapter covers biocompatability, in addition to an appendix and glossary. Sensors in Biomedical Applications is the definitive reference book for a broad audience. All physicists, chemists and biologists interested in the chemical basis and effects of sensors will find this work invaluable. Biomedical engineers and sensor specialists will find the text useful in its pointed analysis of special design, processing and application problems. Physicians practicing with diagnostic tools will want to see the possibilities and limits of biomedical sensors. Finally, students of all of the above areas who wish to learn more about the basics of biomedical sensors need to have this book.
Ethics for Health Promotion and Health Education discusses ethical principles and interpretations by classical ethicists as they apply to health promotion and health education. The book unpacks ethical expectations in promoting and teaching health in both the classroom and as a researcher or practitioner and then applies the code of ethics using case study methods throughout. This informative text was written by health educators and practitioners to assist health educator and practitioner communities.
Advances in cellular physiology and molecular biology have now disclosed the metabolic changes and adaptational responses of the heart to various kinds of stresses. Topics covered in this volume include the regulation of myocardial proteins in mechanical overload, the alteration of adrenoceptors in the stressed heart, metabolic adaptation in cardiac hypertrophy, intracellular calcium metabolism in the ischemia-reperfused myocardium, calcium overload as a cause of myocardial stunning, acquisition of ischemic tolerance by ischemic preconditioning, factors that accelerate myocardial injury, and ventricular remodeling in the ischemic heart. As an update of the latest findings in basic cardiology, this book will benefit both researchers and clinical practitioners.
High-throughput measurements of gene expression and genetic marker data facilitate systems biologic and systems genetic data analysis strategies. Gene co-expression networks have been used to study a variety of biological systems, bridging the gap from individual genes to biologically or clinically important emergent phenotypes.
This systematic theological study uses the example of Johann Georg Hamann (1730-1788) to examine and systematically develop the question of determining the relationship of theology and natural science. In the course of translating basic structures of an "objective" view of the world into categories of a linguistic-hermeneutic understanding of reality, Hamann makes possible a connection of creation as a communicative process with an understanding of nature which opens up its "grammatical" structures.
This textbook has been conceptualized to provide a detailed description of the various aspects of Systems and Synthetic Biology, keeping the requirements of M.Sc. and Ph.D. students in mind. Also, it is hoped that this book will mentor young scientists who are willing to contribute to this area but do not know from where to begin. The book has been divided into two sections. The first section will deal with systems biology - in terms of the foundational understanding, highlighting issues in biological complexity, methods of analysis and various aspects of modelling. The second section deals with the engineering concepts, design strategies of the biological systems ranging from simple DNA/RNA fragments, switches and oscillators, molecular pathways to a complete synthetic cell will be described. Finally, the book will offer expert opinions in legal, safety, security and social issues to present a well-balanced information both for students and scientists.
The book sets out to inform a broad range of professionals working in medicine and healthcare about how creative thinking and design concepts can be used to innovate in providing an enhanced patient experience. It outlines these concepts as a primary means to identify, clarify and resolve some of the process improvement and enhancement challenges in healthcare delivery. It demonstrates by example how such challenges can be addressed, drawing on case examples from healthcare and other industries, and from the authors’ own experiences as innovators and educators. It emphasizes the value of learning in action. For the reader who already has a leaning towards novel approaches to addressing healthcare delivery challenges, it provides guidance on harnessing team inputs and engaging with a network of contributors. It is an ideal resource for all working in medicine and healthcare, from managers, nurses, doctors, administrators, executives, and allied health professionals to medical engineers, medical physicists, medical scientists and medical product developers. Features Provides a unique framework to conceptualise innovation in healthcare and medicine. Authored by an award-winning medical scientist and an established business school Professor who have proven track-records with innovation, in education settings and as entrepreneurs. Presents a clear interdisciplinary approach, complemented with practical case studies set in the context of the challenges facing healthcare delivery in the 21st century. Dr. Barry McMahon has a national and international reputation as an Academic Medical Physicist in the fields of novel physiological measurement and medical device innovation and design. He is the co- inventor of the Functional Lumen Imaging Probe (FLIP) technique later commercialised as EndoFLIP™. He was the Director of the Innovation Academy at Trinity College Dublin from 2012 to 2017. Since 2020 he is advising Children’s Health Ireland on innovation practice. In 2021, he retired as Chief Physicist/Clinical Engineer at Tallaght Hospital, Ireland and currently runs his own innovation-consulting group Electric Mindset Ltd. Dr. Paul Coughlan is Professor in Operations Management and Co-Director of Faculty at Trinity Business School, Trinity College Dublin. His research explores collaborative strategic improvement of operations through network action learning. He was the Director of the Innovation Academy at Trinity College Dublin from 2010 to 2012. He is a founding director of a research-based spin-out venture, Easy Hydro Ltd.
There are many examples of cooperation in Nature: cells cooperate to form tissues, organs cooperate to form living organisms, and individuals cooperate to raise their offspring or to hunt. However, why cooperation emerges and survives in hostile environments, when defecting would be a much more profitable short-term strategy, is a question that still remains open. During the past few years, several explanations have been proposed, including kin and group selection, punishment and reputation mechanisms, or network reciprocity. This last one will be the center of the present study. The thesis explores the interface between the underlying structure of a given population and the outcome of the cooperative dynamics taking place on top of it, (namely, the Prisoner's Dilemma Game). The first part of this work analyzes the case of a static system, where the pattern of connections is fixed, so it does not evolve over time. The second part develops two models for growing topologies, where the growth and the dynamics are entangled.
I want to express my sincere thanks to all authors who submitted research papers to support the Third IFIP International Conference on Computer and Computing Te- nologies in Agriculture and the Third Symposium on Development of Rural Infor- tion (CCTA 2009) held in China, during October 14-17, 2009. This conference was hosted by the CICTA (EU-China Centre for Information & Communication Technologies, China Agricultural University), China National En- neering Research Center for Information Technology in Agriculture, Asian Conf- ence on Precision Agriculture, International Federation for Information Processing, Chinese Society of Agricultural Engineering, Beijing Society for Information Te- nology in Agriculture, and the Chinese Society for Agricultural Machinery. The pla- num sponsor includes the Ministry of Science and Technology of China, Ministry of Agriculture of China, Ministry of Education of China, among others. The CICTA (EU-China Centre for Information & Communication Technologies, China Agricultural University) focuses on research and development of advanced and practical technologies applied in agriculture and on promoting international communi- tion and cooperation. It has successfully held three International Conferences on C- puter and Computing Technologies in Agriculture, namely CCTA 2007, CCTA 2008 and CCTA 2009. Sustainable agriculture is the focus of the whole world currently, and therefore the application of information technology in agriculture is becoming more and more - portant. 'Informatized agriculture' has been sought by many countries recently in order to scientifically manage agriculture to achieve low costs and high incomes.
This book offers an accessible introduction to random walk and diffusion models at a level consistent with the typical background of students in the life sciences. In recent decades these models have become widely used in areas far beyond their traditional origins in physics, for example, in studies of animal behavior, ecology, sociology, sports science, population genetics, public health applications, and human decision making. Developing the main formal concepts, the book provides detailed and intuitive step-by-step explanations, and moves smoothly from simple to more complex models. Finally, in the last chapter, some successful and original applications of random walk and diffusion models in the life and behavioral sciences are illustrated in detail. The treatment of basic techniques and models is consolidated and extended throughout by a set of carefully chosen exercises.
In the last few years, the boom in biobanking has prompted a lively debate on a host of interrelated legal issues, such as the Gordian knot of the ownership of biological materials, as well as privacy concerns. The latter are due to the difficulty of accepting that biological samples must be completely anonymous without making it practically impossible to exploit their information potential. The issues also include the delicate role and the changing content of the donor's "informed consent" as the main legal tool that may serve to link the privacy and property interests of donors with the research interests and the set of principles that should be at the core of the biobanking practice. Lastly, the IP issues and the patentability of biological samples as well as the protection of databases storing genetic information obtained from the samples are covered. Collecting eighteen essays written by eminent scholars from Italy, the US, the UK and Canada, this book provides new solutions to these problems. From a comparative viewpoint, it explores the extent to which digital technology may assist in tackling the numerous regulatory issues raised by the practice of biobanking for research purposes. These issues may be considered and analyzed under the traditional paradigms of Property, Privacy, Informed Consent and Intellectual Property.
Prostate Cancer Metabolism: From Biochemistry to Therapeutics shows the peculiarities of prostate cancer metabolism, emphasizing the targetable aspects - that have not been considered in conventional treatment protocols. The book specifically addresses treatment of the castration-resistant stage of prostate cancer proposing many repurposed drugs and nutraceuticals to complement, not replace, standard therapies. The large body of evidence supporting these concepts makes them deserving of further research and well-designed clinical trials. It discusses lipid, cholesterol, glutamine, and glucose metabolisms and their impact on prostate cancer. Additionally, it explains how current established drugs can be repurposed to improve treatment outcomes. The concepts set out in the book, that deal with cancer at the cellular/molecular level, help identify new avenues of research and treatments to pursue that do not affect well-being whilst offer consistent benefits. Since most practicing physicians have not studied basic biochemistry since medical school, each chapter begins with a brief review of the topic to facilitate an understanding of the metabolically-oriented approach to targeting prostate cancer. Conventional treatments are not discussed here since they are covered in textbooks and specialized updates that abound in the medical literature. It is a valuable resource for cancer researchers, oncologists, clinicians and members of biomedical field who want to learn more about prostate cancer metabolism and how to apply recent findings in the field to bedside.
Handbook of Current and Novel Protocols for the Treatment of Infertility is a valuable resource of well-organized, comprehensive scientific data with practical guides and step-by-step protocols for infertility management. Written by contributors located worldwide, this book discusses different practice patterns and approaches used internationally, along with innovative topics including preimplantation genetic testing, time lapse imaging and the role of artificial intelligence in ART. This book provides up-to-date, evidence-based guidance on daily practice and is a valuable resource for infertility providers, including trainees in the field of reproductive endocrinology and infertility, embryologists, specialists in reproductive medicine and gynecologists. The field of Assisted Reproductive Technology (ART) is rapidly evolving and stimulation protocols, fertility strategies and aspects of infertility treatments are constantly being updated as advances and new discoveries are made.
This book provides a comprehensive and up-to-date collection of review articles focusing on RNA-mediated regulation in prokaryotes. The various modes of action include the direct interaction with proteins, direct sensing of metabolites or of physical parameters, and the interaction with RNAs to stimulate or prevent binding of ribosomes or to stimulate degradation. Written by leading experts in the field, the book covers small RNA functions, RNA thermometers, riboswitches, the diversity of small RNA-guided CRISPR-Cas defense systems and selected RNA chaperons in both prokaryotic domains, bacteria and archaea. Recent advances towards the computational identification of regulatory RNAs and their targets are included and particular attention is paid to small RNA in pathogenic bacteria. This volume is the only one exclusively covering regulatory RNAs in the prokaryotic domains to date, making it essential literature for anyone interested in RNA function and gene regulation and a valuable resource for teaching these concepts.
At first glance the concepts of time and of Petri nets are quite contrary: while time determines the occurrences of events in a system, classic Petri nets consider their causal relationships and they represent events as concurrent systems. But if we take a closer look at how time and causality are intertwined we realize that there are many possible ways in which time and Petri nets interact. This book takes a closer look at three time-dependent Petri nets: Time Petri nets, Timed Petri nets, and Petri nets with time windows. The author first explains classic Petri nets and their fundamental properties. Then the pivotal contribution of the book is the introduction of different algorithms that allow us to analyze time-dependent Petri nets. For Time Petri nets, the author presents an algorithm that proves the behavioral equivalence of a net where time is designed once with real and once with natural numbers, so we can reduce the state space and consider the integer states exclusively. For Timed Petri nets, the author introduces two time-dependent state equations, providing a sufficient condition for the non-reachability of states, and she also defines a local transformation for converting these nets into Time Petri nets. Finally, she shows that Petri nets with time-windows have the ability to realize every transition sequence fired in the net omitting time restrictions. These classes of time-dependent Petri nets show that time alone does not change the power of a Petri net, in fact time may or may not be used to force firing. For Time Petri nets and Timed Petri nets we can say that they are Turing-powerful, and thus more powerful than classic Petri nets, because there is a compulsion to fire at some point in time. By contrast, Petri nets with time-windows have no compulsion to fire, their expressiveness power is less than that of Turing-machines. This book derives from advanced lectures, and the text is supported throughout withexamples and exercises. It issuitable for graduate courses in computer science, mathematics, engineering, and related disciplines, and as a reference for researchers."
Symptomatic: The Symptom-Based Handbook for Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders offers a novel approach structured around the panoply of 75 symptoms with which a person with Ehlers-Danlos syndromes (EDS) and hypermobility spectrum disorders (HSD) may present to a clinician. The content is arranged intuitively from head to feet, with each chapter integrating clinical case studies with a concise discussion and two important diagnostic tools: a simplified algorithm for diagnosing and treating each symptom and differential diagnoses and alternative explanations for their symptoms. This is a handbook that combines the expertise of some 70 leading clinicians, representing more than 30 specialties. This book is suited for clinicians who need a concise and straight-forward presentation of the various and complex symptoms they confront in their clinical practice. It brings forth a field of knowledge emerging from interdisciplinary collaboration despite the pressures of specialization that bridges gaps in understanding between the several dozen disciplines implicated in EDS and HSD.
Covers the State of the Art in Superfluidity and Superconductivity Superfluid States of Matter addresses the phenomenon of superfluidity/superconductivity through an emergent, topologically protected constant of motion and covers topics developed over the past 20 years. The approach is based on the idea of separating universal classical-field superfluid properties of matter from the underlying system's "quanta." The text begins by deriving the general physical principles behind superfluidity/superconductivity within the classical-field framework and provides a deep understanding of all key aspects in terms of the dynamics and statistics of a classical-field system. It proceeds by explaining how this framework emerges in realistic quantum systems, with examples that include liquid helium, high-temperature superconductors, ultra-cold atomic bosons and fermions, and nuclear matter. The book also offers several powerful modern approaches to the subject, such as functional and path integrals. Comprised of 15 chapters, this text: Establishes the fundamental macroscopic properties of superfluids and superconductors within the paradigm of the classical matter field Deals with a single-component neutral matter field Considers fundamentals and properties of superconductors Describes new physics of superfluidity and superconductivity that arises in multicomponent systems Presents the quantum-field perspective on the conditions under which classical-field description is relevant in bosonic and fermionic systems Introduces the path integral formalism Shows how Feynman path integrals can be efficiently simulated with the worm algorithm Explains why nonsuperfluid (insulating) ground states of regular and disordered bosons occur under appropriate conditions Explores superfluid solids (supersolids) Discusses the rich dynamics of vortices and various aspects of superfluid turbulence at T 0 Provides account of BCS theory for the weakly interacting Fermi gas Highlights and analyzes the most crucial developments that has led to the current understanding of superfluidity and superconductivity Reviews the variety of superfluid and superconducting systems available today in nature and the laboratory, as well as the states that experimental realization is currently actively pursuing
The Coronavirus pandemic that began in 2019 brought to the fore, the presence of a significant minority of individuals who strongly oppose vaccination. This opposition is by no means recent. Ever since the very first attempts to immunize individuals, opposition has been intense in some societies. The reasons for this opposition range from religious to political to medical. Although vaccines have eliminated smallpox and largely eliminated polio and measles, opposition to vaccination persists and, in some countries, has grown stronger. The History of Vaccine Hesitancy seeks to describe the history of this opposition as well as its changing rationale over the years and in different societies. The discussion may ultimately provide some suggestions for reducing hesitancy in the future.
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. It is a discipline that addresses current issues: climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control and biodiversity depletion. This series gathers review articles that analyze current agricultural issues and knowledge, then proposes alternative solutions. |
You may like...
29th International Symposium on Shock…
Riccardo Bonazza, Devesh Ranjan
Hardcover
R5,391
Discovery Miles 53 910
Mechanical and Chemical Signaling in…
Cynthia A. Reinhart-King
Hardcover
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
|