![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
"A comprehensive guide to solid-state chemistry which is ideal for all undergraduate levels. It covers well the fundamentals of the area, from basic structures to methods of analysis, but also introduces modern topics such as sustainability." Dr. Jennifer Readman, University of Central Lancashire, UK "The latest edition of Solid State Chemistry combines clear explanations with a broad range of topics to provide students with a firm grounding in the major theoretical and practical aspects of the chemistry of solids." Professor Robert Palgrave, University College London, UK Solid State Chemistry: An Introduction 5th edition is a fully revised edition of one of our most successful textbooks with at least 20% new information. Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials, porous materials for the capture of carbon dioxide and other pollutants. This edition aims, as previously, not only to teach the basic science that underpins the subject, but also to direct the reader to the most modern techniques and to expanding and new areas of research. The user-friendly style takes a largely non-mathematical approach and gives practical examples of applications of solid state materials and concepts. A notable and timely addition to the 5th edition is a chapter on sustainability written by an expert in the field. Examples of how solid state chemistry contribute to sustainability are also given in relevant chapters. Other new topics in this edition include cryo-electron microscopy, X-ray photoelectron spectroscopy (ESCA) and covalent organic frameworks. A companion website offering accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more has been provided for this edition. New in the Fifth Edition A companion website which offers accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more A new chapter on sustainability in solid-state chemistry written by an expert in this field Cryo-electron microscopy X-ray photoelectron spectroscopy (ESCA) Covalent organic frameworks Graphene oxide and bilayer graphene Elaine A. Moore studied chemistry as an undergraduate at Oxford University and then stayed on to complete a DPhil in theoretical chemistry with Peter Atkins. After a two-year postdoctoral position at the University of Southampton, she joined the Open University in 1975, becoming a lecturer in chemistry in 1977, senior lecturer in 1998, and reader in 2004. She retired in 2017 and currently has an honorary position at the Open University. She has produced OU teaching texts in chemistry for courses at levels 1, 2, and 3 and written texts in astronomy at level 2 and physics at level 3. She was team leader for the production and presentation of an Open University level 2 chemistry module delivered entirely online. She is a Fellow of the Royal Society of Chemistry and a Senior Fellow of the Higher Education Academy. She was co-chair for the successful Departmental submission of an Athena Swan bronze award. Lesley E. Smart studied chemistry at Southampton University, United Kingdom. After completing a PhD in Raman spectroscopy, she moved to a lectureship at the (then) Royal University of Malta. After returning to the United Kingdom, she took an SRC Fellowship to Bristol University to work on X-ray crystallography. From 1977 to 2009, she worked at the Open University chemistry department as a lecturer, senior lecturer, and Molecular Science Programme director, and she held an honorary senior lectureship there until her death in 2016. At the Open University, she was involved in the production of undergraduate courses in inorganic and physical chemistry and health sciences. She served on the Council of the Royal Society of Chemistry and as the chair of their Benevolent Fund.
Inchworms, tiger moths, underwings, owlet moths, silkworms,sphinx moths, grass moths, and butterflies. Collectively, these and many others are the Lepidoptera, one of the most diverse groups of animals on the planet. Lepidoptera can be found in the highest tropical canopies,the driest deserts, and at the leading edge of science. The adults include some of the most beautiful insects that have inspired artists and have sailed through the dreams of human cultures for millennia. The immature stages ("caterpillars"), like the underwing depicted on the cover, link together vital processes in diverse terrestrial ecosystems that are only barely documented let alone understood. The people that study these animals are lepidopterists, and the goal of this book is to introduce them with their own words. In twenty chapters, lepidopterists tell their stories, and these tales mirror the diversity of nature in their range and depth. You will find individuals that wrestle with the challenges of scientific careers, stories of far flung travel sand close calls, and historical perspectives on recent decades of scientific break throughs.
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in Sao Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Hemostasis Management of the Pediatric Surgical Patient provides knowledge on the emerging area of pediatric hemostasis and its management. It discusses aspects of perioperative blood management in the pediatric population, including how to accurately estimate and monitor bleeding and determine optimal treatment regimens for bleeding in pediatric surgical patients. It also provides information on the implementation of intraoperative blood conservation strategies, goal-directed transfusion therapy, and postoperative estimation of bleeding and thrombotic risks. This book is a valuable resource to pediatric practitioners and researchers who need comprehensive information on pediatric hematology, from basic physiology to pre-, intra- and postoperative care of pediatric patients. The coagulation system of children evolves with age as evidenced by marked physiological differences in the concentration of hemostatic proteins between children of different age groups and adults. Consequently, there are distinct differences in hemostatic management between adult and pediatric patients.
The creation and consumption of content, especially visual content, is ingrained into our modern world. This book contains a collection of texts centered on the evaluation of image retrieval systems. To enable reproducible evaluation we must create standardized benchmarks and evaluation methodologies. The individual chapters in this book highlight major issues and challenges in evaluating image retrieval systems and describe various initiatives that provide researchers with the necessary evaluation resources. In particular they describe activities within ImageCLEF, an initiative to evaluate cross-language image retrieval systems which has been running as part of the Cross Language Evaluation Forum (CLEF) since 2003. To this end, the editors collected contributions from a range of people: those involved directly with ImageCLEF, such as the organizers of specific image retrieval or annotation tasks; participants who have developed techniques to tackle the challenges set forth by the organizers; and people from industry and academia involved with image retrieval and evaluation generally. Mostly written for researchers in academia and industry, the book stresses the importance of combing textual and visual information - a multimodal approach - for effective retrieval. It provides the reader with clear ideas about information retrieval and its evaluation in contexts and domains such as healthcare, robot vision, press photography, and the Web.
In Silico Chemistry and Biology: Current and Future Prospects provides a compact overview on recent advances in this highly dynamic branch of chemistry. Various methods of protein modelling and computer-assisted drug design are presented, including fragment- and ligand-based approaches. Many successful practical applications of these techniques are demonstrated. The authors also look to the future and describe the main challenges of the field.
This is the first book entirely dedicated to Intravital Microscopy. It provides the reader with a broad overview of the main applications of Intravital Microscopy in various areas of the biomedical field. The book contains accurate descriptions of the state of the art methodologies used to image various organs at different level of resolution, ranging from whole tissue down to sub-cellular structures. Moreover, it is an extremely valuable guide to scientists that want to adopt this powerful technique and do not have experience with animal models and microscopy.
Life is produced by the interplay of water and biomolecules. This book deals with the physicochemical aspects of such life phenomena produced by water and biomolecules, and addresses topics including "Protein Dynamics and Functions," "Protein and DNA Folding," and "Protein Amyloidosis." All sections have been written by internationally recognized front-line researchers. The idea for this book was born at the 5th International Symposium "Water and Biomolecules," held in Nara city, Japan, in 2008. Written for: Scientists, academic libraries, advanced students
This textbook provides a basic introduction to ethnobiology with key concepts for beginners. It is also written for those who teach ethnobiology or related fields. The core issues and concepts, as well as approaches and theoretical positions are fully covered.
This volume presents a compelling collection of state-of-the-art work in algorithmic computational biology, honoring the legacy of Professor Bernard M.E. Moret in this field. Reflecting the wide-ranging influences of Prof. Moret's research, the coverage encompasses such areas as phylogenetic tree and network estimation, genome rearrangements, cancer phylogeny, species trees, divide-and-conquer strategies, and integer linear programming. Each self-contained chapter provides an introduction to a cutting-edge problem of particular computational and mathematical interest. Topics and features: addresses the challenges in developing accurate and efficient software for the NP-hard maximum likelihood phylogeny estimation problem; describes the inference of species trees, covering strategies to scale phylogeny estimation methods to large datasets, and the construction of taxonomic supertrees; discusses the inference of ultrametric distances from additive distance matrices, and the inference of ancestral genomes under genome rearrangement events; reviews different techniques for inferring evolutionary histories in cancer, from the use of chromosomal rearrangements to tumor phylogenetics approaches; examines problems in phylogenetic networks, including questions relating to discrete mathematics, and issues of statistical estimation; highlights how evolution can provide a framework within which to understand comparative and functional genomics; provides an introduction to Integer Linear Programming and its use in computational biology, including its use for solving the Traveling Salesman Problem. Offering an invaluable source of insights for computer scientists, applied mathematicians, and statisticians, this illuminating volume will also prove useful for graduate courses on computational biology and bioinformatics.
Providing the most comprehensive, up-to-date coverage of this exciting biomedical field, Handbook of Photomedicine gathers together a large team of international experts to give you a complete account of the application of light in healthcare and medical science. The book progresses logically from the history and fundamentals of photomedicine to diverse therapeutic applications of light, known collectively as phototherapies. It facilitates your understanding of human diseases caused by light, the rationale for photoprotection, and major applications of phototherapy in clinical practice. The handbook begins with a series of historical vignettes of pioneers from the last two centuries. It also presents the fundamentals of physics and biology as applied to photomedicine. It next examines conditions and diseases caused by light, including skin cancer, dermatoses, and immunosuppression. The remainder of the book focuses on the most important clinical therapeutic applications of different kinds of light that vary in both wavelength and intensity. The book discusses ultraviolet phototherapy for skin diseases and infections and presents the basic science of photodynamic therapy and its use in cancer therapy and other medical specialties. It then covers mechanistic studies and clinical applications of low-level laser (light) therapy as well as the use of high power or surgical laser therapy in specialties, such as dentistry and dermatology. The book concludes with a collection of miscellaneous types of phototherapy.
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are * Modeling techniques for anthropomorphic bipedal walking systems * Optimized walking motions for different objective functions * Identification of objective functions from measurements * Simulation and optimization approaches for humanoid robots * Biologically inspired control algorithms for bipedal walking * Generation and deformation of natural walking in computer graphics * Imitation of human motions on humanoids * Emotional body language during walking * Simulation of biologically inspired actuators for bipedal walking machines * Modeling and simulation techniques for the development of prostheses * Functional electrical stimulation of walking.
Gastroesophageal reflux is one of the most common maladies of
mankind. Approximately 40% of the adult population of the USA
suffers from significant heartburn and the numerous antacids
advertised incessantly on national television represents a $8
billion per year drug market. The ability to control acid secretion
with the increasingly effective acid-suppressive agents such as the
H2 blockers (pepcid, zantac) and proton pump inhibitors (nexium,
prevacid) has given physicians an excellent method of treating the
symptoms of acid reflux.
This book develops methods using mathematical kinetic theory to describe the evolution of several socio-biological systems. Specifically, the authors deal with modeling and simulations of biological systems constituted by large populations of interacting cells, whose dynamics follow the rules of mechanics as well as their own ability to organize movement and biological functions. It proposes a new biological model focused on the analysis of competition between cells of an aggressive host and cells of the immune system. Modeling in kinetic theory may represent a way to understand phenomena of non equilibrium statistical mechanics that is not described by the traditional macroscopic approach. The authors of this work focus on models that refer to the Boltzmann equation (generalized Boltzmann models) with the dynamics of populations of several interacting individuals (kinetic population models). The book follows the classical research line applied to modeling real systems, linking the phenomenological observation of systems to modeling and simulations. used to identify the prediction ability of specific models. The book will be a valuable resource for applied mathematicians as well as researchers in the field of biological sciences. It may also be used for advanced graduate courses in biological systems modeling with applications to collective social behavior, immunology, and epidemiology.
The risks of shortages for some crucial metals and uncertainty about the land-based reserves of several others justify the search to diversify our sources of supply and investigate their potential. Mineral resources in the deep sea are attracting increasing interest with the progressive discovery of various forms of ores. France possesses large areas of deep seafloor in the three oceans as well as world-class human and technological resources and know-how, resulting from over 40 years of experience. This study takes stock of knowledge about mineralisations and associated metals, technologies for exploring and exploiting them, biodiversity and the potential impact of exploitation on the deep environment and the partnerships which are vital for France and Europe. This information will be useful for decision-makers in drawing up strategies, defining research and development programmes and in enhancing and developing commercial utilizations for these high-potential resources.
The best way to become acquainted with a subject is to write a book about it. BenjaminDisraeli Cryobiologyisatruemultidisciplinaryscienceinvolvingconceptsfrombiology, medicine, and physics. Its ?eld comprises the study of any biologicalobject or system (e. g. , proteins, cells, tissues, organs, or organisms) under the temp- atures below the normal (ranging from hypothermic conditions to cryogenic temperatures): cold-adaptation of organisms; cryoconservation of biological objects; conservation of organs under hypothermic conditions; lyophilization; cryosurgery. Origins of cryobiology could be traced down to ancient Eg- tians; probably the ?rst scienti?c account of this science is the monograph by Sir Robert Boyle "New Experiments and Observations Touching Cold" (London, 1683). Twentieth century witnessed a rapid development of cryo- ologyrelatedtotheprogressofthecryogenicequipment(closedsystemsbased on liquid nitrogen, Joule-Tohomson cooling with mixed gases, etc. ), devel- ments of monitoring techniques, extension of the list of diseases that have been successfully treated by cryomedicine, and consolidation of research by foundation (simultaneously in 1964) of two major scienti?c societies in this ? eld - The Society for Cryobiology and The Society for Low Temperature Biology. There are a lot of good books on cryobiologythat can be divided into two groups: (1) the ones that treat the whole ?eld of cryobiology - these ones are somewhatout-of-dateand(2)thebooksonspeci?capplicationsofcryobiology such as cryosurgery or cryoconservation.
This review series covers trends in modern biotechnology, including all aspects of this interdisciplinary technology, requiring knowledge, methods, and expertise from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science.
In "Emergence, Mind, and Consciousness," author Gary A. Lucas does something that many consider impossible: he bridges the gap between a bottom-up description of brain mechanisms and the top-down emergence of mental processes. The result is a comprehensive yet readily understandable explanation of how consciousness emerges. Lucas, however, strives to do more. He seeks to design an artificial agent with all the essential properties of the human mind- consciousness, declarative memory, a sense of self, reasoning skills, language, and social identity. His account is mechanistic, and yet, as the bio-inspired networks are linked to emergent mental properties, we come to understand that we can truly construct a conscious agent. We have a model for how to build one. If you're interested in the emergent properties of mind, consciousness, cognition, self-awareness, social belongingness, or the possibility of constructing a robotic agent with such properties, then this is essential reading. It is conscious mind explained on a level that even a robot will understand it.
Computational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2019) in Shenzhen, China. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. These proceedings appeal to researchers, students and professionals in the field.
Quite possibly the first comprehensive text on galactomannans, Industrial Galactomannan Polysaccharides compiles information on their industrial uses in the form of gums including locust bean, guar, tara, fenugreek, cassia-tara, and Sesbania-bisipinasa varieties. The book describes how galactomannans are currently produced commercially and how they have become industrial commodities. It provides a simple and clear introduction to these vital substances, it compares their various sources. Highlights General chapters on carbohydrates, hydrocolloids and associated rheology, interactions of galactomannans, and derivatization of polysaccharides A brief history of each product gum, cultivation of the plant sources, seed, habitat, chemical structure, functional properties, manufacturing processes, and applications Special focus on the most representative galactomannans: guar and locust bean gums An in-depth compilation of industrial galactomannans information, this book is designed for the manufacturers, traders, and end users of galactomannans, as well as technologists in polysaccharides-related industries and scientists and academics interested in carbohydrates.
The spectroscopy of highly charged ions plays a key role in numerous areas of physics, from quantum electrodynamics (QED) and parity nonconservation (PNC) testing to fusion and plasma physics to x-ray astronomy. Handbook for Highly Charged Ion Spectroscopic Research brings together many of the techniques and ideas needed to carry out state-of-the-art research in this field. The first part of the book presents techniques of light/ion sources, spectrometers, and detectors. It also covers coincidence techniques and examines how atomic properties change along an isoelectronic sequence. The second part focuses on atomic structure and applications. In addition, it discusses theoretical ideas, such as QED and PNC, that are significant in precise spectroscopic studies of highly charged ions. Extensive references are included at the end of each chapter. With the latest developments in fusion and x-ray astronomy research relying heavily on high-quality atomic data, the need for precise, up-to-date spectroscopic techniques is as vital now as it has ever been. This timely handbook explores how these spectroscopic methods for highly charged ions are used in various areas of physics.
The book describes the significant multidisciplinary research findings at the Universita Politecnica delle Marche and the expected future advances. It addresses some of the most dramatic challenges posed by today's fast-growing, global society and the changes it has caused. It also discusses solutions to improve the wellbeing of human beings. The book covers the main research achievements in the various disciplines of the life sciences, and includes chapters that highlight mechanisms relevant to all aspects of human diseases, the molecular, cellular, and functional basis of therapy, and its translation into the management of people's health needs. It also describes research on traditional and innovative foods to enhance quality, safety and functionality, and to develop bioactive/nutraceutical compounds. Further chapters address conservation and management of various environments, from the forests to the oceans, describing the studies on countermeasures against climate changes and terrestrial/aquatic pollutants, and on terrestrial/marine biodiversity, ecosystems and landscapes, erosion of genetic biodiversity, innovative aquaculture feed, sustainable crop production and management of forests. Lastly, the book reports the findings of research work on different classes of biomolecules, and on the molecular basis of antibiotic resistances and their diffusion.
The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. Volume 5 is devoted to cells, tissues, and organs of the cardiovascular and ventilatory systems with an emphasis on mechanotransduction-based regulation of flow. The blood vessel wall is a living tissue that quickly reacts to loads applied on it by the flowing blood. In any segment of a blood vessel, the endothelial and smooth muscle cells can sense unusual time variations in small-magnitude wall shear stress and large-amplitude wall stretch generated by abnormal hemodynamic stresses. These cells respond with a short-time scale (from seconds to hours) to adapt the vessel caliber. Since such adaptive cell activities can be described using mathematical models, a key objective of this volume is to identify the mesoscopic agents and nanoscopic mediators required to derive adequate mathematical models. The resulting biomathematical models and corresponding simulation software can be incorporated into platforms developed in virtual physiology for improved understanding and training.
Healthcare Systems Design of Intelligent Testing Centers: Latest Technologies to Battle Pandemics such as Covid-19 highlights the importance of designing intelligent testing centers requiring no human intervention during sample collection and testing of the Covid-19 virus and all similar viruses. This book introduces the background, medical requirements, and new research on medical robotics applications, including general Covid-19 testing techniques, development considerations for intelligent testing booths, kinematic and dynamic modeling, design specifications and optimization, numerical verifications, actuators, and sensors in medical applications of artificial intelligence and robotics systems. |
![]() ![]() You may like...
Language Ideologies and Media Discourse…
Sally Johnson, Tommaso M. Milani
Hardcover
R5,962
Discovery Miles 59 620
Beyond Borrowing - Lexical Interaction…
Hyejeong Ahn, Jieun Kiaer, …
Hardcover
R4,006
Discovery Miles 40 060
Research Methods in Linguistic…
Sabina M. Perrino, Sonya E. Pritzker
Hardcover
R3,399
Discovery Miles 33 990
|