![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > General
Life scientists believe that life is driven, directed, and shaped by biomolecules working on their own or in concert. It is only in the last few decades that technological breakthroughs in sensitive fluorescence microscopy and single-molecule manipulation techniques have made it possible to observe and manipulate single biomolecules and measure their individual properties. The methodologies presented in Single Molecule Techniques: Methods and Protocols are being applied more and more to the study of biologically relevant molecules, such as DNA, DNA-binding proteins, and motor proteins, and are becoming commonplace in molecular biophysics, biochemistry, and molecular and cell biology. The aim of Single Molecule Techniques: Methods and Protocols is to provide a broad overview of single-molecule approaches applied to biomolecules on the basis of clear and concise protocols, including a solid introduction to the most widely used single-molecule techniques, such as optical tweezers, single-molecule fluorescence tools, atomic force microscopy, magnetic tweezers, and tethered particle motion. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Single Molecule Techniques: Methods and Protocols serves as an ideal guide to scientists of all backgrounds and provides a broad and thorough overview of the exciting and still-emerging field of single-molecule biology.
Interfacial electrochemistry of redox metalloproteins and DNA-based molecules is presently moving towards new levels of structural and functional resolution. This is the result of powerful interdisciplinary efforts. Underlying fundamentals of biological electron and proton transfer is increasingly well understood although with outstanding unresolved issues. Comprehensive bioelectrochemical studies have mapped the working environments for bioelectrochemical electron transfer, supported by the availability of mutant proteins and other powerful biotechnology. Introduction of surface spectroscopy, the scanning probe microscopies, and other solid state and surface physics methodology has finally offered exciting new fundamental and technological openings in interfacial bioelectrochemistry of both redox proteins and DNA-based molecules.Inorganic Bioelectrochemistry provides a thorough and didactic overview of state-of-the-art bioelectrochemistry with prospects for forthcoming development. The book is organized in eight chapters written by leading international experts and covers crucial relevant topics such as electron and proton transfer in metalloprotein systems, electrochemistry and electrocatalysis of redox enzymes, and electrochemistry of DNA-based molecules.
The third edition of this long-serving successful reference work is
a 'must-have' reference for anyone needing or desiring an
understanding of the structure, chemistry, properties, production
and uses of starches and their derivatives. * Includes specific information on corn, wheat, potato, rice, and new chapters on rye, oat and barley (including waxy barley) starches * Covers the isolation processes, properties, functionalities, and uses of the most commonly used starches. * Explores the genetics, biochemistry, and physical structure of starches * Presents current and emerging application trends for starch
In this book, the molecular recognition of DNA using small molecules is discussed, with a study of the photochemistry of BrU-labeled DNA. The purposes of the study were to develop small molecules for regenerative medicine, to develop a method to detect the recognition site of small molecules, and to detect the most important biological phenomena using the photochemistry of BrU-labeled DNA. The study began with the design and development of small molecules that can induce pluripotency genes. To deal with the important issue of cell permeability of the original compound, a new analogue of the original with improved gene expression was designed and synthesized. Using the photochemistry of BrU-labeled DNA, crucial biological phenomena such as cooperativity between transcription factors were detected. For the first time, the cooperativity was examined by excess electron transfer assay. DNA was also studied very carefully in order to understand the mechanism of the double-strand break in the UVA micro-irradiation technique. The mechanism of the double strand remained untouched. Nevertheless, the double-strand break mechanism was clearly demonstrated by Hoechst dye, as shown in this book.
This book argues that, to be healthy, human beings should love nature and stay in balance with it as much as possible. In other words: do not unbalance nature so that your own balance is not disturbed. The best and healthiest way for human beings to live is to find balance in life and nature. In this regard, the book discusses useful, nutritious, functional foods, nutraceuticals and antioxidants, and how natural molecules, which are provided by nature, can be the best medicine for human beings. At a molecular level, stress is defined by the presence of unbalanced free radicals in the body. Most diseases - especially type 2 diabetes, which accounts for the majority of diabetics - can be traced back to this problem. Our scientific evidence indicates that type 2 diabetes isn't just a disease resulting from sugar, but also from stress. The book seeks to promote a healthier lifestyle by considering the psychoemotional dimension of wellness. And finally, it contends that good sleep is at the root of health and happiness for humanity, and that unbalanced free radicals are expelled from the body during restful sleep. The authors hope that this book will be a helpful guide and source of peace for readers, especially given their need for inner calm during the COVID-19 pandemic, and that the suggestions provided will show them the way to a better life.
Contents Philip C. Sharpe, Rosemary S. Harrison, and David P. Fairlie: Amyloid Peptides and Proteins in Review. - Marilena Kampa, Artemissia-Phoebe Nifli, George Notas, Elias Castanas: Polyphenols and Cancer Cell Growth. - Michal Janitz: Assigning Functions to Genes The Main Challenge of the Post-Genomic Era. - Brigittte M. Jockusch, Kai Murk and Martin Rothkegel: The Profile of Profilins.
At the intersection of metabolite analysis, metabolic fingerprinting, and metabolomics, the study of metabolic profiling has evolved steadily over the course of time as have the methods and technologies involved in its study. In Metabolic Profiling: Methods and Protocols, expert researchers in the field present protocols that are illustrative of the evolution of metabolic profiling from single molecule analysis to global metabolome profiling. Comprised of the most essential techniques, this volume covers topics from inborn errors of metabolism and drug metabolite analysis to nuclear magnetic resonance metabolic profiles. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Metabolic Profiling: Methods and Protocols serves as a resource for both established and new investigators in this vital and ever-developing field.
With the number of natural carotenoid structures reported rising above 700, there is a clear need for a single reference work containing data on all these compounds. This Handbook includes all natural carotenoids and common isolation artefacts for which structures have been assigned up to the end of 2001. For each compound, it provides selected key references and critically assessed information about natural occurrence and isolation, and spectroscopic data for identification. A standard full-page entry is given for each compound that has been characterised unambiguously, showing - Common name
Patch Clamp Methods and Protocols surveys the typical patch clamp applications and advises scientists on identifying problems and selecting the best technique in each instance. The experiments described aid the researcher in pursuing new areas of electrophysiology and using the patch clamp technique effectively. The volume includes an extensive theoretical treatise concerning single channel kinetic analysis.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field. All chapters from Topics in Heterocyclic Chemistry are published Online First with an individual DOI. In references, Topics in Heterocyclic Chemistry is abbreviated as Top Heterocycl Chem and cited as a journal.
There are several books on properties of chitin and associated biomolecules and their biochemical significance. However, the present volume deals with a wide variety of biogeochemical and organic geochemical aspects of this vital macromolecule written by leading authors and experts in the field. Each chapter is carefully peer reviewed and is an updated account of recent research in isotopic, nanostructural, biochemical, microstructural, geochemical, paleontological and experimental aspects of chitin formation, distribution and preservation in the environment and earth history.
This book includes a collection of chapters illustrating the application of geochemical methods to investigate the interactions between geological materials and fluids with humans. Examples include the incorporation and human health effects of inhaling lithogenic materials, the reactivity of biological fluids with geological materials, and the impact on nascent biomineral formation. Biomineralization is investigated in terms of mineralogy, morphology, bone chemistry, and pathological significance with a focus on the health impacts of "foreign" geological/environmental trace element incorporation. One of the contribution is devoted to particulate matter, the presence of metals and metalloids in the environment, and the possibility of using human hair as a biomarker between environmental/geological exposure and human bioincorporation. Other chapters focus on the last advances on the analytical methods and instrumentational approaches to investigating the chemistry of biological fluids and tissues.
Contents: Gerard Jaouen, Nils Metzler-Nolte : Introduction ; Stephane GIBAUD and Gerard JAOUEN: Arsenic - based drugs: from Fowler's solution to modern anticancer chemotherapy; Ana M. Pizarro, Abraha Habtemariam and Peter J. Sadler : Activation Mechanisms for Organometallic Anticancer Complexes; Angela Casini, Christian G. Hartinger, Alexey A. Nazarov, Paul J. Dyson : Organometallic antitumour agents with alternative modes of action; Elizabeth A. Hillard, Anne Vessieres, Gerard Jaouen : Ferrocene functionalized endocrine modulators for the treatment of cancer; Megan Hogan and Matthias Tacke : Titanocenes - Cytotoxic and Anti-Angiogenic Chemotherapy Against Advanced Renal-Cell Cancer; Seann P. Mulcahy and Eric Meggers : Organometallics as Structural Scaffolds for Enzyme Inhibitor Design; Christophe Biot and Daniel Dive : Bioorganometallic Chemistry and Malaria; Nils Metzler-Nolte : Biomedical applications of organometal-peptide conjugates; Roger Alberto : Organometallic Radiopharmaceuticals; Brian E. Mann : Carbon Monoxide - an essential signaling molecule.
Introduction to Electron Microscopy for Biologists is ideal for the
scientist who may be considering electron microscopy as a tool to
extend molecular, biochemical, or light microscope observations to
the next level of structural information, only available by
electron microscopy. Each chapter briefly surveys the present state
of structural information in a particular area, be it an individual
but widely occurring molecule such as actin or collagen, together
with the methods for visualization, either as an extracted and
purified entity, or in situ within its biological context. Not only
is this book an introduction to electron microscopy in general, but
it is also useful for those within the field who wish to move to a
different area of expertise, for instance an approach based on
rapid freezing, rather than more conventional protocols. This
should be a first choice reference for any biologist wanting to
know 'what does it look like' across the full spectrum of cell and
molecular biology of life science.
The 2002 Nobel Prize in Physiology or Medicine was awarded to
Sydney Brenner (United Kingdom), H. Robert Horvitz (US) and John E.
Sulston (UK) "for their discoveries concerning genetic regulation
of organ development and programmed cell death." Cell death is a
fundamental aspect of embryonic development, normal cellular
turnover and maintenance of homeostasis (maintaining a stable,
constant environment) on the one hand, and aging and disease on the
other. This volume addresses the significant advances with the
techniques that are being used to analyze cell death.
This thesis focuses on the development of gold- and non-classical platinum-based anti-cancer agents that display distinctively different anti-cancer mechanisms compared to the commonly used cisplatin. These metal complexes contain N-heterocyclic carbene (NHC) ligands which are able to form strong M-C(NHC) bonds, conferring high stability and favorable lipophilicity, reactivity and binding specificity of metal complexes on biomolecules. The author demonstrates significant advances made in anti-cancer gold(III), gold(I) and platinum(II) complexes. Detailed chemical synthesis, in vitro and/or in vivo anti-cancer activities are clearly presented including: (i) a class of Au(III) complexes containing a highly fluorescent N^N^N ligand and NHC ligand that simultaneously act as fluorescent thiol "switch-on" probes and anti-cancer agents; (ii) a dinuclear gold(I) complex with a mixed diphosphine and bis(NHC) ligand displaying favorable stability and showing significant inhibition of tumor growth in two independent mice models with no observable side effects; and (iii) a panel of stable luminescent cyclometalated platinum(II) complexes exhibiting high specificity to localize to the endoplasmic reticulum (ER) domain, inducing ER stress and cell apoptosis. These works highlight the clinical potential that gold and platinum complexes offer for cancer treatment.
In this thesis single-molecule fluorescence resonance energy transfer (FRET) spectroscopy was used to study the folding of a protein that belongs to the large and important family of repeat proteins. Cohen shows that the dynamics of the expanded conformations is likely to be very fast, suggesting a spring-like motion of the whole chain. The findings shed new light on the elasticity of structure in repeat proteins, which is related to their function in binding multiple and disparate partners. This concise research summary provides useful insights for students beginning a PhD in this or a related area, and researchers entering this field.
The Nobel Prize was awarded in Physiology or Medicine in 1998 to
Louis J. Ignarro, Robert F. Furchgott and Ferid Murad for
demonstrating the signaling properties of nitric oxide. Nitric
Oxide (NO) is one of the few gaseous signaling molecules and is a
key biological messenger that plays a role in many biological
processes. NO research has led to new treatments for treating heart
as well as lung diseases, shock and impotence. (Sildenafil,
popularly known by the trade name Viagra, enhances signaling
through nitric oxide pathways.) Scientists are currently testing
whether NO can be used to stop the growth of cancerous tumors,
since the gas can induce programmed cell death, apoptosis.
"Current Topics in Membranes" provides a systematic, comprehensive,
and rigorous approach to specific topics relevant to the study of
cellular membranes. Each volume is a guest edited compendium of
membrane biology.
Plant taxonomy is an ancient discipline facing new challenges with the current availability of a vast array of molecular approaches which allow reliable genealogy-based classifications. Although the primary focus of plant taxonomy is on the delimitation of species, molecular approaches also provide a better understanding of evolutionary processes, a particularly important issue for some taxonomic complex groups."Molecular Plant Taxonomy: Methods and Protocols"describes laboratory protocols based on the use of nucleic acids and chromosomes for plant taxonomy, as well as guidelines for phylogenetic analysis of molecular data. Experts in the field also contribute review and application chapters that will encourage the reader to develop an integrative taxonomy approach, combining nucleic acid and cytogenetic data together with other crucial information (taxonomy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany), which will help not only to best circumvent species delimitation but also to resolve the evolutionary processes in play.Written in the successful"Methods in Molecular Biology"series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Molecular Plant Taxonomy: Methods and Protocols"seeks to provide conceptual as well as technical guidelines to plant taxonomists and geneticists."
The account in this inaugural volume of the series covers the period 1900 to 1960, but also outlines the principal developments in earlier centuries from which biochemistry emerged. Findings are considered in the light of present knowledge, rather than in a rigid historical framework.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect -
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit: |
![]() ![]() You may like...
Electronic Resources and Services in…
Mary Schlembach, William Mischo
Hardcover
R2,878
Discovery Miles 28 780
Introducing and Managing Academic…
John W. Head, Gerard B McCabe
Hardcover
R2,849
Discovery Miles 28 490
|