![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This book focuses on the calculus of variations, including fundamental theories and applications. This textbook is intended for graduate and higher-level college and university students, introducing them to the basic concepts and calculation methods used in the calculus of variations. It covers the preliminaries, variational problems with fixed boundaries, sufficient conditions of extrema of functionals, problems with undetermined boundaries, variational problems of conditional extrema, variational problems in parametric forms, variational principles, direct methods for variational problems, variational principles in mechanics and their applications, and variational problems of functionals with vector, tensor and Hamiltonian operators. Many of the contributions are based on the authors' research, addressing topics such as the extension of the connotation of the Hilbert adjoint operator, definitions of the other three kinds of adjoint operators, the extremum function theorem of the complete functional, unified Euler equations in variational methods, variational theories of functionals with vectors, modulus of vectors, arbitrary order tensors, Hamiltonian operators and Hamiltonian operator strings, reconciling the Euler equations and the natural boundary conditions, and the application range of variational methods. The book is also a valuable reference resource for teachers as well as science and technology professionals.
Frontiers in Civil and Hydraulic Engineering focuses on the research of architecture and hydraulic engineering in civil engineering. The proceedings feature the most cutting-edge research directions and achievements related to civil and hydraulic engineering. Subjects in the proceedings including: * Engineering Structure * Intelligent Building * Structural Seismic Resistance * Monitoring and Testing * Hydraulic Engineering * Engineering Facility The works of this proceedings can promote development of civil and hydraulic engineering, resource sharing, flexibility and high efficiency. Thereby, promote scientific information interchange between scholars from the top universities, research centers and high-tech enterprises working all around the world.
This book focuses on theoretical aspects of dynamical systems in the broadest sense. It highlights novel and relevant results on mathematical and numerical problems that can be found in the fields of applied mathematics, physics, mechanics, engineering and the life sciences. The book consists of contributed research chapters addressing a diverse range of problems. The issues discussed include (among others): numerical-analytical algorithms for nonlinear optimal control problems on a large time interval; gravity waves in a reservoir with an uneven bottom; value distribution and growth of solutions for certain Painleve equations; optimal control of hybrid systems with sliding modes; a mathematical model of the two types of atrioventricular nodal reentrant tachycardia; non-conservative instability of cantilevered nanotubes using the Cell Discretization Method; dynamic analysis of a compliant tensegrity structure for use in a gripper application; and Jeffcott rotor bifurcation behavior using various models of hydrodynamic bearings.
The book investigates fundamental issues in flexible manipulator systems, including distributed parameter modeling and boundary controller design. It presents theoretical explorations of several fundamental problems concerning the dynamics and control of these systems. By integrating fresh concepts and results to form a systematic approach to control, it also provides a basic theoretical framework. In turn, the book offers a comprehensive treatment of flexible manipulator systems, addressing topics ranging from related distributed parameter modeling and advanced boundary controller design for these systems with input constraint, to active control with output constraint. In brief, the book addresses dynamical analysis and control design for flexible manipulator systems. Though primarily intended for researchers and engineers in the control system and mechanical engineering community, it can also serve as supplemental reading on the modeling and control of flexible manipulator systems at the postgraduate level.
This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.
Instabilities of fluid flows and the associated transitions between different possible flow states provide a fascinating set of problems that have attracted researchers for over a hundred years. This book addresses state-of-the-art developments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.
For courses in Engineering Design. Engineering By Design introduces students to a broad range of important design topics. The engineering design process provides the skeletal structure for the text, around which is wrapped numerous cases that illustrate both successes and failures in engineering design. The text provides a balance of qualitative presentation of engineering practices that can be understood by students with little technical knowledge and a more quantitative approach in which substantive analytical techniques are used to develop and evaluate proposed engineering solutions. This flexibility means that the text can be used in a wide variety of courses.
The text is designed for undergraduate Mechanical Engineering courses in Kinematics and Dynamics of Machinery. It is a tool for professors who wish to develop the ability of students to formulate and solve problems involving linkages, cams, gears, robotic manipulators and other mechanisms. There is an emphasis on understanding and utilizing the implications of computed results. Students are expected to explore questions like "What do the results mean?" and "How can you improve the design?"
For a senior/graduate-level course in corrosion. Comprehensive in approach, this text explores the scientific principles and methods that underlie the cause, detection, measurement, and prevention of many metal corrosion problems in engineering practice. Most chapters progress from qualitative, descriptive sections (including methods of prevention and testing), to more quantitative sections (involving metallurgy and electrochemistry), and finally to sections on current research developments in the chapter topic.
Junior or Senior level Vibration courses in Departments of Mechanical Engineering. A thorough treatment of vibration theory and its engineering applications, from simple degree to multi degree-of-freedom system.
This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.
Drag Reduction of Complex Mixtures discusses the concept of drag reduction phenomena in complex mixtures in internal and external flows that are shown experimentally by dividing flow patterns into three categories. The book is intended to support further experiments or analysis in drag reduction. As accurately modeling flow behavior with drag reduction is always complex, and since drag reducing additives or solid particles are mixed in fluids, this book covers these complex phenomena in a concise, but comprehensive manner.
Simply put, a variable speed drive is a controller that allows a machine to run at different speeds depending upon automated input from an industrial process. That in turn provides the ability to provide smoother operations, and most importantly, energy savings by slowing down machinery when a process does not have to run at full speed. Long a leading book on this class of controllers, this new edition by industry authority David Spitzer will provide the latest improvements to variable speed drives, including automated 'smart' feedback systems. Readers with both basic and advanced controller knowledge will find this book to be extremely useful introduction to how variable speed drivers work, how they are best used, and what to do and what to avoid when employing them as part of an overall automated industrial enterprise, all with an eye on energy savings. The reader will find: * A basic overview of electrical, hydraulic, and instrumentation principles of variable speed drives * Coverage of the role that variable speed drives can play in overall plant energy requirements and energy savings * Coverage of developments in variable frequency drives * Coverage of new integrated manufacturing applications for variable speed drives * Newly added examples of real-world applications that help make the theory and knowledge more clear and understandable.
This book presents the most important tools, techniques, strategy and diagnostic methods used in industrial engineering. The current widely accepted methods of diagnosis and their properties are discussed. Also, the possible fruitful areas for further research in the field are identified.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems.
This book is the first of two volumes providing comprehensive coverage of the fundamental knowledge and technology of composite materials. It covers a variety of design, fabrication and characterization methods as applied to composite materials, particularly focusing on the fiber-reinforcement mechanism and related examples. It is ideal for graduate students, researchers, and professionals in the fields of Materials Science and Engineering, and Mechanical Engineering.
This book focuses on nonlinear finite element analysis of thin-walled smart structures integrated with piezoelectric materials. Two types of nonlinear phenomena are presented in the book, namely geometrical nonlinearity and material nonlinearity. Geometrical nonlinearity mainly results from large deformations and large rotations of structures. The book discusses various geometrically nonlinear theories including von Karman type nonlinear theory, moderate rotation nonlinear theory, fully geometrically nonlinear theory with moderate rotations and large rotation nonlinear theory. The material nonlinearity mainly considered in this book is electroelastic coupled nonlinearity resulting from large driving electric field. This book will be a good reference for students and researchers in the field of structural mechanics.
Bio-inspired Algorithms for Engineering builds a bridge between the proposed bio-inspired algorithms developed in the past few decades and their applications in real-life problems, not only in an academic context, but also in the real world. The book proposes novel algorithms to solve real-life, complex problems, combining well-known bio-inspired algorithms with new concepts, including both rigorous analyses and unique applications. It covers both theoretical and practical methodologies, allowing readers to learn more about the implementation of bio-inspired algorithms. This book is a useful resource for both academic and industrial engineers working on artificial intelligence, robotics, machine learning, vision, classification, pattern recognition, identification and control. |
![]() ![]() You may like...
Built Heritage: Monitoring Conservation…
Lucia Toniolo, Maurizio Boriani, …
Hardcover
Advances in Cryogenic Engineering…
Richard P. Reed, F. R Fickett, …
Hardcover
R8,729
Discovery Miles 87 290
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,614
Discovery Miles 46 140
Management Of Information Security
Michael Whitman, Herbert Mattord
Paperback
|