![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > General
This book provides solution for challenges facing engineers in urban environments looking towards smart development and IoT. The authors address the challenges faced in developing smart applications along with the solutions. Topics addressed include reliability, security and financial issues in relation to all the smart and sustainable development solutions discussed. The solutions they provide are affordable, resistive to threats, and provide high reliability. The book pertains to researchers, academics, professionals, and students. Provides solutions to urban sustainable development problems facing engineers in developing and developed countries Discusses results with industrial problems and current issues in smart city development Includes solutions that are reliable, secure and financially sound
This book covers challenges and solutions in establishing Industry 4.0 standards for Internet of Things. It proposes a clear view about the role of Internet of Things in establishing standards. The sensor design for industrial problem, challenges faced, and solutions are all addressed. The concept of digital twin and complexity in data analytics for predictive maintenance and fault prediction is also covered. The book is aimed at existing problems faced by the industry at present, with the goal of cost-efficiency and unmanned automation. It also concentrates on predictive maintenance and predictive failures. In addition, it includes design challenges and a survey of literature.
The relay feedback test (RFT) has become a popular and efficient in process identification and automatic controller tuning. "Non-parametric Tuning of PID Controllers" couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) method. Industrial loop tuning for distributed control systems using modified RFT is also described. Many of the problems of tuning rules optimization and identification with modified RFT are accompanied by MATLAB(r) code, downloadable from http: //extras.springer.com/978-1-4471-4464-9 to allow the reader to duplicate the results. "Non-parametric Tuning of PID Controllers" is written for readers with previous knowledge of linear control and will be of interest to academic control researchers and graduate students and to practitioners working in a variety of chemical- mechanical- and process-engineering-related industries.
This book gathers selected peer-reviewed papers presented at the 6th European Lean Educator Conference (ELEC), held in Milan, Italy, on November 11-13, 2019. The conference topics include the following: lean trainings in university and industry collaborations; lean product and process development; lean and people empowerment; emerging contexts for lean applications; measuring lean performance; lean, green and circular; continuous improvement initiatives; lean thinking in practice; organizational culture in lean journeys; and innovative training approaches to teaching lean management. The contributions explore the latest academic and industrial findings on and advances in lean education, and identify innovative methods that allow lean thinking benefits to be achieved in practice. As such, the book presents the outcomes of a fruitful exchange between academia and industry designed to help train the next generation of lean educators.
This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.
This book aims at addressing the challenges of contemporary manufacturing in Industry 4.0 environment and future manufacturing (aka Industry 5.0), by implementing soft computing as one of the major sub-fields of artificial intelligence. It contributes to development and application of the soft computing systems, including links to hardware, software and enterprise systems, in resolving modern manufacturing issues in complex, highly dynamic and globalized industrial circumstances. It embraces heterogeneous complementary aspects, such as control, monitoring and modeling of different manufacturing tasks, including intelligent robotic systems and processes, addressed by various machine learning and fuzzy techniques; modeling and parametric optimization of advanced conventional and non-conventional, eco-friendly manufacturing processes by using machine learning and evolutionary computing techniques; cybersecurity framework for Internet of Things-based systems addressing trustworthiness and resilience in machine-to-machine and human-machine collaboration; static and dynamic digital twins integration and synchronization in a smart factory environment; STEP-NC technology for a smart machine vision system, and integration of Open CNC with Service-Oriented Architecture for STEP-NC monitoring system in a smart manufacturing. Areas of interest include but are not limited to applications of soft computing to address the following: dynamic process/system modeling and simulation, dynamic process/system parametric optimization, dynamic planning and scheduling, smart, predictive maintenance, intelligent and autonomous systems, improved machine cognition, effective digital twins integration, human-machine collaboration, robots, and cobots.
New, global and extended markets are forcing companies to process and manage increasingly differentiated products with shorter life cycles, low volumes and reduced customer delivery times. In today's global marketplace production systems need to be able to deliver products on time, maintain market credibility and introduce new products and services faster than competitors. As a result, a new production paradigm of a production system has been developed and a supporting management decision-making approach simultaneously incorporating design, management, and control of the production system is necessary so that this challenge can be effectively and efficiency met. "Maintenance Engineering and its Applications in Production Systems" meets this need by introducing an original and integrated idea of maintenance: maintenance for productivity. The volume starts with the introduction and discussion of a new conceptual framework based on productivity, quality, and safety supported by maintenance. Subsequent chapters illustrate the most relevant models and methods to plan, organise, implement and control the whole maintenance process (reliability evaluation models and prediction, maintenance strategies and policies, spare parts management, computer maintenance management software - CMMS, and total productive maintenance - TPM, etc.). Several examples of problems supported by solutions, and real applications to help and test the reader's comprehension are included. "Maintenance Engineering and its Applications in Production Systems" will certainly be valuable to engineering students, doctoral and post-doctoral students and also to maintenance practitioners, as well as managers of industrial and service companies.
This book highlights the sustainability aspects of additive manufacturing (AM) in two separate volumes. It describes the details of this technology and its implications on the entire product life cycle sustainability, as well as embedded carbon and the further research needed to move this technology towards sustainable, mainstream production. Sustainability is not new for any area of industry, including additive manufacturing, and there are currently a number of ongoing research projects, both in industry and in academic institutions, that are investigating sustainability, embedded carbon and research activities which would need to be done in the future to move this technology towards sustainable mainstream production.
This book offers an extensive, interdisciplinary overview of dynamic textiles. Specifically, it discusses new findings and design concepts concerning the integration of smart materials into textile substrates and their corresponding dynamic behavior. Introducing the topic of dynamic color in textiles, it presents experimental procedures to achieve color change and dynamic light transmittance in thermochromic textiles, and examines their thermoresponsive behavior and respective electrical activation. Moreover, it also addresses the topic of dynamic form and reports on the authors' original findings using shape-memory alloys and geometric morphologies based on origami techniques. Covering innovative smart textiles and important considerations in terms of design variables when developing textiles with dynamic qualities, and providing extensive, practice-oriented insights into the interaction of textiles with light, it is primarily intended for academics, researchers and practitioners developing smart, dynamic and interactive textiles. The sections describing in detail the experimental work aimed at the integration of smart materials in textile substrates also appeal to professionals in the textile industry.
Ultra-precision machining is a promising solution for achieving excellent machined surface quality and sophisticated micro/nano-structures that influence the applications of components and devices. Further, given the ultrathin layer of material removed, it is a highly coupled process between cutting tool and material. In this book, scientists in the fields of mechanical engineering and materials science from China, Ukraine, Japan, Singapore present their latest research findings regarding the simulation and experiment of material-oriented ultra-precision machining. Covering various machining methods (cutting, grinding, polishing, ion beam and laser machining) and materials (metal, semiconductor and hard-brittle ceramics), it mainly focuses on the evaluation of the fundamental mechanisms and their implementation in processing optimization for different materials. It is of significant theoretical and practical value for guiding the fabrication of ultra-smooth and functional surfaces using ultra-precision machining.
This book is the fourth volume in the series devoted to gear engineering and computer-aided design, production, testing and education. It comprises fundamental and applied research contributions by scientists and gear experts from all the world and covers recent developments and historical achievements in various spheres of mechanical engineering related to different kinds of gears, transmissions, and drive systems. It gathers contributions describing the advanced approaches to research, design, testing and production of practically all common and new kinds of gears for a vast number of advanced applications. Special attention is paid to issues of higher education in the field of gears. The book is intended as a tribute to professor Veniamin Goldfarb (1941-2019), one of the world-known leaders in the field of gear research, education and production, who contributed much to the active international cooperation of gear experts and to promotion of MMS science. The introductory chapter of this book relates his research to major developments in the field of mechanisms and machine science and outlines important contributions that he made within the period of 1964-2019.
The Internet of Services and the Internet of Things are major building blocks of the Future Internet. The digital enterprise of the future is based not only on mobile, social, and cloud technologies, but also on semantic technologies and the future Internet of Everything. Semantic technologies now enable mass customization for the delivery of goods and services that meet individual customer needs and tastes with near mass production efficiency and reliability. This is creating a competitive advantage in the industrial economy, the service economy, and the emerging data economy, leading to smart products, smart services, and smart data, all adaptable to specific tasks, locations, situations, and contexts of smart spaces. Such technologies allow us to describe, revise, and adapt the characteristics, functions, processes, and usage patterns of customization targets on the basis of machine-understandable content representation that enables automated processing and information sharing between human and software agents. This book explains the principal achievements of the Theseus research program, one of the central programs in the German government's Digital 2015 initiative and its High-Tech Strategy 2020. The methods, toolsets, and standards for semantic technologies developed during this program form a solid basis for the fourth industrial revolution (Industrie 4.0), the hybrid service economy, and the transformation of big data into useful smart data for the emerging data economy. The contributing authors are leading scientists and engineers, representing world-class academic and industrial research teams, and the ideas, technologies, and representative use cases they describe in the book derive from results in multidisciplinary fields, such as the Internet of Services; the Semantic Web, and semantic technologies, knowledge management, and search; user interfaces, multimodal interaction, and visualization; machine learning and data mining; and business process support, manufacturing, automation, medical systems, and integrated service engineering. The book will be of value to both researchers and practitioners in these domains."
Integral processes with dead time are frequently encountered in the process industry; typical examples include supply chains, level control and batch distillation columns. Special attention must be paid to their control because they lack asymptotic stability (they are not self-regulating) and because of their delays. As a result, many techniques have been devised to cope with these hurdles both in the context of single-degree-of-freedom (proportional-integral-differential (PID)) and two-degree-of-freedom control schemes. Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: how to tune a PID controller and assess its performance; how to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; how to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives. Control of Integral Processes with Dead Time will serve academic researchers in systems with dead time both as a reference and stimulus for new ideas for further work and will help industry-based control and process engineers to solve their control problems using the most suitable technique and achieving the best cost: benefit ratio."
In the industrial design and engineering field, product lifecycle, product development, design process, Design for X, etc., constitute only a small sample of terms related to the generation of quality products. Current best practices cover widely different knowledge domains in trying to exploit them to the best advantage, individually and in synergy. Moreover, standards become increasingly more helpful in interfacing these domains and they are enlarging their coverage by going beyond the single domain boundary to connect closely different aspects of the product lifecycle. The degree of complexity of each domain makes impossible the presence of multipurpose competencies and skills; there is almost always the need for interacting and integrating people and resources in some effective way. These are the best conditions for the birth of theories, methodologies, models, architectures, systems, procedures, algorithms, software packages, etc., in order to help in some way the synergic work of all the actors involved in the product lifecycle. This brief introduction contains all the main themes developed in this book, starting from the analysis of the design and engineering scenarios to arrive at the development and adoption of a framework for product design and process reconfiguration. In fact, the core consists of the description of the Design GuideLines Collaborative Framework (DGLs-CF), a methodological approach that generates a collaborative environment where designers, manufacturers and inspectors can find the right and effective meeting point to share their knowledge and skills in order to contribute to the optimum generation of quality products.
The 6th International Asia Conference on Industrial Engineering and Management Innovation is sponsored by the Chinese Industrial Engineering Institution and organized by Tianjin University. The conference aims to share and disseminate information on the most recent and relevant researches, theories and practices in industrial and system engineering to promote their development and application in university and enterprises.
This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15 17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included despite space and time constraints. Basic concepts and fundamentals techniques have been emphasized upon, while also including highly specialized topics and methods (such as nanotribology, bio-nanotribology). Care has been taken to generate interest for a wide range of readers, considering the interdisciplinary nature of the subject."
This book provides an introduction to the Human Centred Design of autonomous vehicles for professionals and students. While rapid progress is being made in the field of autonomous road vehicles the majority of actions and the research address the technical challenges, with little attention to the physical, perceptual, cognitive and emotional needs of humans. This book fills a gap in the knowledge by providing an easily understandable introduction to the needs and desires of people in relation to autonomous vehicles. The book is "human centred design" led, adding an important human perspective to the primarily technology-driven debates about autonomous vehicles. It combines knowledge from fields ranging from linguistics to electrical engineering to provide a holistic, multidisciplinary overview of the issues affecting the interactions between autonomous vehicles and people. It emphasises the constraints and requirements that a human centred perspective necessitates, giving balanced information about the potential conflicts between technical and human factors. The book provides a helpful introduction to the field of design ethics, to enhance the reader's awareness and understanding of the multiple ethical issues involved in autonomous vehicle design. Written as an accessible guide for design practitioners and students, this will be a key read for those interested in the psychological, sociological and ethical factors involved in automotive design, human centred design, industrial design and technology.
The pace of development in knowledge and know-how in the Organisation Sciences, Logistics and Information Technology is rapid. However, the gap between those who practice these sciences and the practicing manager is becoming larger rather than smaller. The Delft Systems Approach sets out to close the gap between theory and practice, and to achieve the following goals:
The Delft Systems Approach is divided into three parts. Part I principally describes a fundamental approach for analysing industrial systems, which emphasizes a concept that can be used by all disciplines involved, and makes a logical systematic combination of quantitative and qualitative modelling. This approach is used for the analysis of industrial systems. Part II is concerned with the use of these models in the design of (future) systems. Finally, Part III contains three comprehensive cases from the authorsa (TM) own practical experiences. All theoretical concepts are directly illustrated with a practical example.
This book deals with a novel and practical advanced method for control of tandem cold metal rolling processes based on the emerging state-dependent Riccati equation technique. After a short history of tandem cold rolling, various types of cold rolling processes are described. A basic mathematical model of the process is discussed, and the diverse conventional control methods are compared. A detailed treatment of the theoretical and practical aspects of the state-dependent algebraic Riccati equation technique is given, with specific details of the new procedure described and results of simulations performed to verify the control model and overall system performance with the new controller coupled to the process model included. These results and data derived from actual operating mills are compared showing the improvements in performance using the new method. Material is included which shows how the new technique can be extended to the control of a broad range of large-scale complex nonlinear processes.
Innovative Management in Information and Production is based on the proceedings of the Third International Symposium on Innovative Management, Information and Production. This symposium is held by International Society of Management Engineers. The symposium took place on October 8-10, in HCMC, Vietnam. This book examines recent innovative management of information and productions such as digital collection management and operations planning, scheduling and control.
The book is concerned with production planning problems arising in the context of make-to-order assembly. After introducing the general decision context, a survey of the relevant literature in the fields of assembly management, make-to-order manufacturing, and project scheduling is given. The main part of the book provides a hierarchical planning approach with three levels: order selection, manufacturing planning, and operations scheduling. The decision problem of each level is carefully elaborated and stated in terms of a mathematical programme. Suited solution procedures such as list scheduling, tabu search, and linear programming are proposed and experimentally tested.
This study presents exploratory work and seeks to identify and evaluate the success and failure factors that could form a guideline for further study and to some extent help professionals to understand some critical aspects that impact project performance concerning construction in India. A total of 55 attributes affecting the performance of construction projects are analysed in terms of their level of influence on four key performance criteria - schedule, cost, quality, and no disputes - using a two-stage questionnaire survey. These attributes are then further analysed, interpreted and evaluated. Based on the critical success factors obtained from the study, a neural network model-based predictive model for project performance has been developed. The performance prediction models have been derived for all four project performance criteria. Further, a hypothesis that 'project success' is influenced by 'success traits' has also been formulated. The hypothesized positive inter-relationships between success traits and project success have been tested using the structural equation modelling technique. Besides supporting the intuition of past researchers in recognizing 'coordination' as a key success factor, this study has revealed that coordination is not an isolated and independent activity, but is a typical management function with an inherent role in all major management activities. Key elements affecting coordination have also been identified and their influence on coordination effort has been studied. Furthermore, the present study has also identified three broad skill groups required of effective project coordinators. The results are validated through case studies of live projects and structured interviews with experts in the field of construction management.
The book provides an introduction to logistics and supply chain management and the application of evolutionary computation, focusing on specific fields related to supply chain issues, from strategic sourcing decisions, and production planning and control to inventory to logistics and its application using evolutionary / heuristics techniques. Bridging the gap between management research, decision-making and computer analysis, this interdisciplinary book features state-of-the-art descriptions of the corresponding problems and advanced methods for solving them.
This book is an introduction to automotive engineering, to give freshmen ideas about this technology. The text is subdivided in parts that cover all facets of the automobile, including legal and economic aspects related to industry and products, product configuration and fabrication processes, historic evolution and future developments. The first part describes how motor vehicles were invented and evolved into the present product in more than 100 years of development. The purpose is not only to supply an historical perspective, but also to introduce and discuss the many solutions that were applied (and could be applied again) to solve the same basic problems of vehicle engineering. This part also briefly describes the evolution of automotive technologies and market, including production and development processes. The second part deals with the description and function analysis of all car subsystems, such as: . vehicle body, . chassis, including wheels, suspensions, brakes and steering mechanisms, . diesel and gasoline engines, . electric motors, batteries, fuel cells, hybrid propulsion systems, . driveline, including manual and automatic gearboxes. This part addresses also many non-technical issues that influence vehicle design and production, such as social and economic impact of vehicles, market, regulations, particularly on pollution and safety. In spite of the difficulty in forecasting the paths that will be taken by automotive technology, the third part tries to open a window on the future. It is not meant to make predictions that are likely to be wrong, but to discuss the trends of automotive research and innovation and to see the possible paths that may be taken to solve the many problems that are at present open or we can expect for the future. The book is completed by two appendices about the contribution of computers in designing cars, particularly the car body and outlining fundamentals of vehicle mechanics, including aerodynamics, longitudinal (acceleration and braking) and transversal (path control) motion.
This book provides information on the generation and the effects of hazardous substances that are produced during welding and allied processes. These processes are thermal cutting, thermal spraying, soldering and brazing. The book offers guidance on the determination of hazardous substances and it simplifies assessment of the hazard due to hazardous substances. In addition, the book explains tests in order to understand the concentration and intensity of key hazardous substances. Last but not least, the book suggests several possibilities of avoiding the risk to worker's health as a result of exposing them to these substances. |
![]() ![]() You may like...
|