|
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > General
Dielectric Metamaterials: Fundamentals, Designs, and Applications
links fundamental Mie scattering theory with the latest dielectric
metamaterial research, providing a valuable reference for new and
experienced researchers in the field. The book begins with a
historical, evolving overview of Mie scattering theory. Next, the
authors describe how to apply Mie theory to analytically solve the
scattering of electromagnetic waves by subwavelength particles.
Later chapters focus on Mie resonator-based metamaterials, starting
with microwaves where particles are much smaller than the free
space wavelengths. In addition, several chapters focus on
wave-front engineering using dielectric metasurfaces and the
nonlinear optical effects, spontaneous emission manipulation,
active devices, and 3D effective media using dielectric
metamaterials.
III-Nitride Electronic Devices, Volume 102, emphasizes two major
technical areas advanced by this technology: radio frequency (RF)
and power electronics applications. The range of topics covered by
this book provides a basic understanding of materials, devices,
circuits and applications while showing the future directions of
this technology. Specific chapters cover Electronic properties of
III-nitride materials and basics of III-nitride HEMT, Epitaxial
growth of III-nitride electronic devices, III-nitride microwave
power transistors, III-nitride millimeter wave transistors,
III-nitride lateral transistor power switch, III-nitride vertical
devices, Physics-Based Modeling, Thermal management in III-nitride
HEMT, RF/Microwave applications of III-nitride transistor/wireless
power transfer, and more.
Capturing, recording and broadcasting the voice is often difficult.
Many factors must be taken into account and achieving a true
representation is much more complex than one might think. The
capture devices such as the position of the singer(s) or
narrator(s), the acoustics, atmosphere and equipment are just some
of the physical aspects that need to be mastered. Then there is the
passage through the analog or digital channel, which disrupts the
audio signal, as well as the processes that are often required to
enrich, improve or even transform the vocal timbre and tessitura.
While in the past these processes were purely material, today
digital technologies and software produce surprising results that
every professional in recording and broadcasting should know how to
master. Recording and Voice Processing 1 addresses some general
theoretical concepts. A history of recording and the physiology of
the vocal apparatus are detailed in order to give the reader an
understanding of the fundamental aspects of the subject. This
volume also includes an advanced study of microphones, addressing
their characteristics and typologies. The acoustic environment and
its treatment are also considered in terms of the location of the
sound capture - whether in a home studio, recording studio, live or
natural environment - in order to achieve a satisfactory sound
recording.
Photonic Crystal Metasurface Optoelectronics, Volume 101, covers an
emerging area of nanophotonics that represents a new range of
optoelectronic devices based on free-space coupled photonic crystal
structures and dielectric metasurfaces. Sections in this new
release include Free-space coupled nanophotonic platforms, Fano
resonances in nanophotonics, Fano resonances in photonic crystal
slabs, Transition from photonic crystals to dielectric
metamaterials, Photonic crystals for absorption control and energy
applications, Photonic crystal membrane reflector VCSELs, Fano
resonance filters and modulators, and Fano resonance photonic
crystal sensors.
Advances in Nonvolatile Memory and Storage Technology, Second
Edition, addresses recent developments in the non-volatile memory
spectrum, from fundamental understanding, to technological aspects.
The book provides up-to-date information on the current memory
technologies as related by leading experts in both academia and
industry. To reflect the rapidly changing field, many new chapters
have been included to feature the latest in RRAM technology,
STT-RAM, memristors and more. The new edition describes the
emerging technologies including oxide-based ferroelectric memories,
MRAM technologies, and 3D memory. Finally, to further widen the
discussion on the applications space, neuromorphic computing
aspects have been included. This book is a key resource for
postgraduate students and academic researchers in physics,
materials science and electrical engineering. In addition, it will
be a valuable tool for research and development managers concerned
with electronics, semiconductors, nanotechnology, solid-state
memories, magnetic materials, organic materials and portable
electronic devices.
Source Separation and Machine Learning presents the fundamentals in
adaptive learning algorithms for Blind Source Separation (BSS) and
emphasizes the importance of machine learning perspectives. It
illustrates how BSS problems are tackled through adaptive learning
algorithms and model-based approaches using the latest information
on mixture signals to build a BSS model that is seen as a
statistical model for a whole system. Looking at different models,
including independent component analysis (ICA), nonnegative matrix
factorization (NMF), nonnegative tensor factorization (NTF), and
deep neural network (DNN), the book addresses how they have evolved
to deal with multichannel and single-channel source separation.
Nanoelectronics: Devices, Circuits and Systems explores current and
emerging trends in the field of nanoelectronics, from both a
devices-to-circuits and circuits-to-systems perspective. It covers
a wide spectrum and detailed discussion on the field of
nanoelectronic devices, circuits and systems. This book presents an
in-depth analysis and description of electron transport phenomenon
at nanoscale dimensions. Both qualitative and analytical approaches
are taken to explore the devices, circuit functionalities and their
system applications at deep submicron and nanoscale levels. Recent
devices, including FinFET, Tunnel FET, and emerging materials,
including graphene, and its applications are discussed. In
addition, a chapter on advanced VLSI interconnects gives clear
insight to the importance of these nano-transmission lines in
determining the overall IC performance. The importance of
integration of optics with electronics is elucidated in the
optoelectronics and photonic integrated circuit sections of this
book. This book provides valuable resource materials for scientists
and electrical engineers who want to learn more about nanoscale
electronic materials and how they are used.
Developments in Antenna Analysis and Design presents recent
developments in antenna design and modeling techniques for a wide
variety of applications, chosen because they are contemporary in
nature, have been receiving considerable attention in recent years,
and are crucial for future developments. It includes topics such as
body-worn antennas, that play an important role as sensors for
Internet of Things (IoT), and millimeter wave antennas that are
vitally important for 5G devices. It also covers a wide frequency
range that includes terahertz and optical frequencies.
Additionally, it discusses topics such as theoretical bounds of
antennas and aspects of statistical analysis that are not readily
found in the existing literature. This second volume covers the
topics of: graphene-based antennas; millimeter-wave antennas;
terahertz antennas; optical antennas; fundamental bounds of
antennas; fast and numerically efficient techniques for analyzing
antennas; statistical analysis of antennas; ultra-wideband arrays;
reflectarrays; and antennas for small satellites, viz., CubeSats.
The first volume covers the theory of characteristic modes (TCM)
and characteristic bases; wideband antenna element designs; MIMO
antennas; antennas for wireless communication; reconfigurable
antennas employing microfluidics; flexible and body-worn antennas;
and antennas using meta-atoms and artificially-engineered
materials, or metamaterials (MTMs). The two volumes represent a
unique combination of topics pertaining to antenna design and
analysis, not found elsewhere. It is essential reading for the
antenna community including designers, students, researchers,
faculty engaged in teaching and research of antennas, and the users
as well as decision makers.
Time domain modeling is a fascinating world which brings together
several complex phenomena and methods of essential interest to
engineers. This book is a reference guide which discusses the most
advanced time-domain modeling methods and applications in
electromagnetics and electrical engineering. The book starts by
clearly explaining why time-domain modeling may be worth doing;
then, it provides guidelines about why some choices must be made
among the principal modeling approaches and next guides the reader
through the state of the art in time domain modeling, concerning
either numerical and analytical methods, and applications. Finally,
it highlights areas for future time-domain modeling research. The
book is a collection of chapters written by leading research groups
in the fields, following a logical development set out by the
editor. Topics covered include finite element methods in time
domain with applications to low-frequency problems; transient
analysis of scattering from composite objects using late-time
stable TDIEs; the transmission-line modeling method, partial
element equivalent circuit method in time-domain; unconditionally
stable time-domain methods; time-domain linear macromodeling,
analytical techniques for transient analysis; the application of
the finite-difference time-domain (FDTD) technique to lightning
studies; modeling of lightning and its interaction with overhead
conductors; transient behaviour of grounding systems; and
statistics of electromagnetic reverberation chambers and their
simulation through time domain modeling.
Developments in Antenna Analysis and Design presents recent
developments in antenna design and modeling techniques for a wide
variety of applications, chosen because they are contemporary in
nature, have been receiving considerable attention in recent years,
and are crucial for future developments. It includes topics such as
body-worn antennas, that play an important role as sensors for
Internet of Things (IoT), and millimeter wave antennas that are
vitally important for 5G devices. It also covers a wide frequency
range that includes terahertz and optical frequencies.
Additionally, it discusses topics such as theoretical bounds of
antennas and aspects of statistical analysis that are not readily
found in the existing literature. This first volume covers the
theory of characteristic modes (TCM) and characteristic bases;
wideband antenna element designs; MIMO antennas; antennas for
wireless communication; reconfigurable antennas employing
microfluidics; flexible and body-worn antennas; and antennas using
meta-atoms and artificially-engineered materials, or metamaterials
(MTMs). A second volume covers the topics of: graphene-based
antennas; millimeter-wave antennas; terahertz antennas; optical
antennas; fundamental bounds of antennas; fast and numerically
efficient techniques for analyzing antennas; statistical analysis
of antennas; ultra-wideband arrays; reflectarrays; and antennas for
small satellites, viz., CubeSats. The two volumes represent a
unique combination of topics pertaining to antenna design and
analysis, not found elsewhere. It is essential reading for the
antenna community including designers, students, researchers,
faculty engaged in teaching and research of antennas, and the users
as well as decision makers.
|
|