![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > General
Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.
This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms.
This book explains concepts behind fractional subsampling-based frequency synthesis that is re-shaping today's art in the field of low-noise LO generation. It covers advanced material, giving clear guidance for development of background-calibrated environments capable of spur-free synthesis and wideband phase modulation. It further expands the concepts into the field of subsampling polar transmission, where the newly developed architecture enables unprecedented spectral efficiency levels, unquestionably required by the upcoming generation of wireless standards.
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
The book will cover the past, present and future developments of field theory and computational electromagnetics. The first two chapters will give an overview of the historical developments and the present the state-of-the-art in computational electromagnetics. These two chapters will set the stage for discussing recent progress, new developments, challenges, trends and major directions in computational electromagnetics with three main emphases: a. Modeling of ever larger structures with multi-scale dimensions and multi-level descriptions (behavioral, circuit, network and field levels) and transient behaviours b. Inclusions of physical effects other than electromagnetic: quantum effects, thermal effects, mechanical effects and nano scale features c. New developments in available computer hardware, programming paradigms (MPI, Open MP, CUDA and Open CL) and the associated new modeling approaches These are the current emerging topics in the area of computational electromagnetics and may provide readers a comprehensive overview of future trends and directions in the area. The book iswritten for students, research scientists, professors, design engineers and consultants who engaged in the fields ofdesign, analysis and research of the emerging technologies related to computational electromagnetics, RF/microwave, optimization, new numerical methods, as well as accelerator simulator, dispersive materials, nano-antennas, nano-waveguide, nano-electronics, terahertz applications, bio-medical and material sciences.The book may also be used for those involved in commercializing electromagnetic and related emerging technologies, sensors and the semiconductor industry. The book can be used as a reference book for graduates and post graduates. It can also be used as a text book for workshops and continuing education for researchers and design engineers."
Analytical Modeling in Applied Electromagnetics offers electrical engineers and advanced students the most complete treatment on the subject published to date, focusing on the nature of models in radio engineering. This leading-edge resource provides detailed coverage of the latest topics that professionals need to understand and applies these concepts to a wide range of applications. It provides practitioners with working examples that are mainly directed to antenna applications, but the modeling methods and results can be used for other practical devices as well. The book features an in-depth discussion of the basic building blocks of every radio system. This analysis includes classical and well-studied topics such as highly conducting surfaces and thin layers of various materials, as well as the more novel or alternative structures being applied today. Introduction. Thin Layers and Sheets. Interfaces and Higher Order Boundary Conditions. Periodical Structures, Arrays, and Meshes. Composite Materials. Applications in Metamaterials and Artificial Impedance Surfaces. Author Index. Subject Index.
This book presents a comprehensive overview of nanoscale electronics and systems packaging, and covers nanoscale structures, nanoelectronics packaging, nanowire applications in packaging, and offers a roadmap for future trends. Composite materials are studied for high-k dielectrics, resistors and inductors, electrically conductive adhesives, conductive "inks," underfill fillers, and solder enhancement. The book is intended for industrial and academic researchers, industrial electronics packaging engineers who need to keep abreast of progress in their field, and others with interests in nanotechnology. It surveys the application of nanotechnologies to electronics packaging, as represented by current research across the field.
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Our aim in this book is to present a bird's-eye view of microwave tubes (MWTs) which continue to be important despite competitive incursions from solid-state devices (SSDs). We have presented a broad and introductory survey which we hope the readers would be encouraged to read rather than going through lengthier books, and subsequently explore the field of MWTs further in selected areas of relevance to their respective interests. We hope that the present book would motivate newcomers to pursue research in MWTs and apprise them as well as decision makers of the salient features and prospects of as well as the trends of progress in MWTs. The scope of ever expanding applications of MWTs in the high power and high frequency regime will sustain and intensify the research and development in MWTs in coming years.
Information technologies play a significant role in modern information-driven societies, making a comprehensive understanding of digital media a fundamental requisite to success. Cases on Usability Engineering: Design and Development of Digital Products provides readers with case studies and real-life examples on usability methods and techniques to test the design and development of digital products, such as web pages, video games, and mobile computer applications. Students, lecturers, and academics concentrating in computer science can use these cases to investigate how and why usability can improve the design of digital technology, offering diverse technological solutions that many academics have largely failed to disseminate. This book is part of the Advances in Human and Social Aspects of Technology series collection.
This book presents breakthroughs in the design of Wireless Energy Harvesting (WEH) networks. It bridges the gap between WEH through radio waves communications and power transfer, which have largely been designed separately. The authors present an overview of the RF-EHNs including system architecture and RF energy harvesting techniques and existing applications. They also cover the idea of WEH in novel discoveries of information, the theoretical bounds in WEH, wireless sensor networks, usage of modern channel coding together with WEH, energy efficient resource allocation mechanisms, distributed self-organized energy efficient designs, delay-energy trade-off, specific protocols for energy efficient communication designs, D2D communication and energy efficiency, cooperative wireless networks, and cognitive networks.
From the Foreword "Getting CPS dependability right is essential to forming a solid foundation for a world that increasingly depends on such systems. This book represents the cutting edge of what we know about rigorous ways to ensure that our CPS designs are trustworthy. I recommend it to anyone who wants to get a deep look at these concepts that will form a cornerstone for future CPS designs." --Phil Koopman, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA Trustworthy Cyber-Physical Systems Engineering provides practitioners and researchers with a comprehensive introduction to the area of trustworthy Cyber Physical Systems (CPS) engineering. Topics in this book cover questions such as What does having a trustworthy CPS actually mean for something as pervasive as a global-scale CPS? How does CPS trustworthiness map onto existing knowledge, and where do we need to know more? How can we mathematically prove timeliness, correctness, and other essential properties for systems that may be adaptive and even self-healing? How can we better represent the physical reality underlying real-world numeric quantities in the computing system? How can we establish, reason about, and ensure trust between CPS components that are designed, installed, maintained, and operated by different organizations, and which may never have really been intended to work together? Featuring contributions from leading international experts, the book contains sixteen self-contained chapters that analyze the challenges in developing trustworthy CPS, and identify important issues in developing engineering methods for CPS. The book addresses various issues contributing to trustworthiness complemented by contributions on TCSP roadmapping, taxonomy, and standardization, as well as experience in deploying advanced system engineering methods in industry. Specific approaches to ensuring trustworthiness, namely, proof and refinement, are covered, as well as engineering methods for dealing with hybrid aspects.
This volume contains revised and extended research articles written by prominent researchers who participated in the international conference on Advances in Engineering Technologies, which was held in Hong Kong, 12-14 March, 2014. Topics covered include engineering physics, engineering mathematics, scientific computing, control theory, artificial intelligence, electrical engineering, communications systems, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.
"Advances in Imaging & Electron Physics" merges two
long-running serials "Advances in Electronics & Electron
Physics" and "Advances in Optical & Electron Microscopy." The
series features extended articles on the physics of electron
devices (especially semiconductor devices), particle optics at high
and low energies, microlithography, image science and digital image
processing, electromagnetic wave propagation, electron microscopy,
and the computing methods used in all these domains.
"Advances in Imaging & Electron Physics" merges two
long-running serials-"Advances in Electronics & Electron
Physics" and "Advances in Optical & Electron Microscopy." The
series features extended articles on the physics of electron
devices (especially semiconductor devices), particle optics at high
and low energies, microlithography, image science and digital image
processing, electromagnetic wave propagation, electron microscopy,
and the computing methods used in all these domains.
This thesis reports on a novel system for extracellular recordings of the activity of excitable cells, which relies on an organic, charge-modulated field-effect transistor (FET) called OCMFET. The book shows how, thanks to the intrinsic biocompatibility, lightness, and inexpensiveness of the material used, this new system is able to overcome several problems typical of of "classic" electronic and bioelectronic. It provides a full description of the system, together with a comprehensive report of the successful experimental trials carried out on both cardiac and nerve cells, and a concise yet comprehensive overview of bioelectronic interfaces and organic sensors for electrophysiological applications.
Biomolecular Electronics the electrical control of biological
phenomena is a scientific challenge that, once fully realized, will
find a wide range of applications from electronics and computing to
medicine and therapeutic techniques. This new arena of biomolecular
electronics is approached using familiar concepts from many areas
such as electrochemistry, device electronics andsome mechanisms of
gene expression level control. Practical techniques are explored by
which electrical and electronic means can be used to control
biological reactions and processes. Also, the current and future
applications for this new and expanding field are discussed. This
book is aimed at scientists and engineers involved in both research
and commercial applications across fields including bioelectronics,
bionanotechnology, electrochemistry and nanomedicine providing a
state-of-the-art survey of what's going on at the boundary between
biology and electronic technology at the micro- and nano- scales,
along with a suggestive insight into future possible
developments.
"Advances in Imaging and Electron Physics" merges two
long-running serials--A"dvances in Electronics and Electron
Physics" and "Advances in Optical and Electron Microscopy." This
series features extended articles on the physics of electron
devices (especially semiconductor devices), particle optics at high
and low energies, microlithography, image science and digital image
processing, electromagnetic wave propagation, electron microscopy,
and the computing methods used in all these domains.
Wireless Body Area Networks (WBANs) are expected to promote new applications for the ambulatory health monitoring of chronic patients and elderly population, aiming to improve their quality of life and independence. These networks are composed by wireless sensor nodes (WSNs) used for measuring physiological variables (e.g., glucose level in blood or body temperature) or controlling therapeutic devices (e.g., implanted insulin pumps). These nodes should exhibit a high degree of energy autonomy in order to extend their battery lifetime or even make the node supply to rely on harvesting techniques. Typically, the power budget of WSNs is dominated by the wireless link and, hence, many efforts have been directed during the last years toward the implementation of power efficient transceivers. Because of the short range (typically no more than a few meters) and low data rate (typically in between 10 kb/s and 1 Mb/s), simple communication protocols can be employed. One of these protocols, specifically tailored for WBAN applications, is the Bluetooth low energy (BLE) standard. This book describes the challenges and solutions for the design of ultra-low power transceivers for WBANs applications and presents the implementation details of a BLE transceiver prototype. Coverage includes not only the main concepts and architectures for achieving low power consumption, but also the details of the circuit design and its implementation in a standard CMOS technology."
This monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity. The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project. Lastly, the book offers a comprehensive survey of error propagation in multipole measurements and an appendix with Mathematica scripts to calculate advanced magnetic coil designs.
This thesis addresses selected unsolved problems in the chemical mechanical polishing process (CMP) for integrated circuits using ruthenium (Ru) as a novel barrier layer material. Pursuing a systematic approach to resolve the remaining critical issues in the CMP, it first investigates the tribocorrosion properties and the material removal mechanisms of copper (Cu) and Ru in KIO4-based slurry. The thesis subsequently studies Cu/Ru galvanic corrosion from a new micro and in-situ perspective, and on this basis, seeks ways to mitigate corrosion using different slurry additives. The findings presented here constitute a significant advance in fundamental and technical investigations into the CMP, while also laying the groundwork for future research. |
![]() ![]() You may like...
Experimental Robotics - The 17th…
Bruno Siciliano, Cecilia Laschi, …
Hardcover
R7,676
Discovery Miles 76 760
Real-Time Systems Development with RTEMS…
Gedare Bloom, Joel Sherrill, …
Hardcover
R5,078
Discovery Miles 50 780
Membrane Computing for Distributed…
Andrei George Florea, Catalin Buiu
Hardcover
R4,323
Discovery Miles 43 230
Theory and Applications for Control of…
Marco Tognon, Antonio Franchi
Hardcover
R3,611
Discovery Miles 36 110
High Performance Computing -- HiPC 2003…
Timothy Mark Pinkston, Viktor K. Prasanna
Paperback
R3,109
Discovery Miles 31 090
|