![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > General
This book reviews existing operational software failure analysis techniques and proposes near-miss analysis as a novel, and new technique for investigating and preventing software failures. The authors provide details on how near-miss analysis techniques focus on the time-window before the software failure actually unfolds, so as to detect the high-risk conditions that can lead to a major failure. They detail how by alerting system users of an upcoming software failure, the detection of near misses provides an opportunity to collect at runtime failure-related data that is complete and relevant. They present a near-miss management systems (NMS) for detecting upcoming software failures, which can contribute significantly to the improvement of the accuracy of the software failure analysis. A prototype of the NMS is implemented and is discussed in the book. The authors give a practical hands-on approach towards doing software failure investigations by means of near-miss analysis that is of use to industry and academia
Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schroedinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic adaptation to traffic patterns changing in the course of the day.
This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.
Multi-Carrier Digital Communications Theory and Applications of OFDM, Second Edition Multi-carrier modulation, Orthogonal Frequency Division Multiplexing (OFDM) particularly, has been successfully applied to a wide variety of digital communications applications over the past several years. OFDM has been chosen as the physical layer standard for a variety of important systems and its implementation techniques continue to evolve rapidly. This book is a valuable summary of the technology, providing an understanding of new advances as well as the present core technology. A unified presentation of OFDM performance and implementation over a wide variety of channels, including both wireline and wireless systems, is made. This will prove valuable both to developers of such systems and to researchers and graduate students involved in analysis of digital communications. In the interest of brevity, the authors have minimized treatment of more general communication issues. There exist many excellent texts on communication theory and technology. Only brief summaries of topics not specific to multi-carrier modulation are presented in this book where essential. As a background, it is assumed that the reader has a clear knowledge of basic fundamentals of digital communications. Highlights of the Second Edition During the past few years since the publication of the first edition of this text, the technology and application of OFDM have continued their rapid pace of advancement. As a result, it became clear that a new edition of the text would be highly desirable. The new edition provides the opportunity to make those corrections and clarifications whose needbecame apparent from continued discussions with many readers. However, the main purpose is to introduce new topics that have come to the forefront during the past few years, and to amplify the treatment of other subject matter. Because of the particularly rapid development of wireless systems employing OFDM, the authors introduced a section early in the text on wireless channel fundamentals. They have extended and modified their analysis of the effects of clipping, including new simulation results. A section of channel estimation has been added to the chapter on equalization. The chapter on local area networks has been greatly expanded to include the latest technology and applications. Three totally new chapters are added, on OFDM multiple access technology, on ultra wideband technology, and on WiMAX (IEEE 802.16). Organization of This Book The authors begin with a historical overview of multi-carrier communications, wherein its advantages for transmission over highly dispersive channels have long been recog-nized, particularly before the development of equalization techniques. They then focus on the bandwidth efficient technology of OFDM, in particular the digital signal processing techniques that have made the modulation format practical. Several chapters describe and analyze the sub-systems of an OFDM implementation, such as clipping, synchronization channel estimation, equalization, and coding. Analysis of performance over channels with various impairments is presented. The book continues with descriptions of three very important and diverse applications of OFDM that have been standardized and are now being deployed. ADSL provides access to digitalservices at several Mbps over the ordinary wire-pair connection between customers and the local telephone company central office. Digital broadcasting enables the radio reception of high-quality digitized sound and video. A unique configuration that is enabled by OFDM is the simultaneous transmission of identical signals by geographically dispersed transmitters. And, the new development of wireless LANs for multi-Mbps communications is presented in detail. Each of these successful applications required the development of new fundamental technology. Finally, the book concludes with describing the OFDM based multiple access techniques, ultra wideband technology and WiMAX.
This book presents the outcomes of the Third National Conference on Communication, Cloud and Big Data (CCB) held on November 2-3, 2018, at Sikkim Manipal Institute of Technology, Majitar, Sikkim. Featuring a number of papers from the conference, it explores various aspects of communication, computation, cloud, and big data, including routing in cognitive radio wireless sensor networks, big data security issues, routing in ad hoc networks, routing protocol for Internet of things (IoT), and algorithm for imaging quality enhancement.
Adaptive Signal Models: Theory, Algorithms and Audio Applications presents methods for deriving mathematical models of natural signals. The introduction covers the fundamentals of analysis-synthesis systems and signal representations. Some of the topics in the introduction include perfect and near-perfect reconstruction, the distinction between parametric and nonparametric methods, the role of compaction in signal modeling, basic and overcomplete signal expansions, and time-frequency resolution issues. These topics arise throughout the book as do a number of other topics such as filter banks and multiresolution. The second chapter gives a detailed development of the sinusoidal model as a parametric extension of the short-time Fourier transform. This leads to multiresolution sinusoidal modeling techniques in Chapter Three, where wavelet-like approaches are merged with the sinusoidal model to yield improved models. In Chapter Four, the analysis-synthesis residual is considered; for realistic synthesis, the residual must be separately modeled after coherent components (such as sinusoids) are removed. The residual modeling approach is based on psychoacoustically motivated nonuniform filter banks. Chapter Five deals with pitch-synchronous versions of both the wavelet and the Fourier transform; these allow for compact models of pseudo-periodic signals. Chapter Six discusses recent algorithms for deriving signal representations based on time-frequency atoms; primarily, the matching pursuit algorithm is reviewed and extended. The signal models discussed in the book are compact, adaptive, parametric, time-frequency representations that are useful for analysis, coding, modification, and synthesis of natural signals such as audio. The models are all interpreted as methods for decomposing a signal in terms of fundamental time-frequency atoms; these interpretations, as well as the adaptive and parametric natures of the models, serve to link the various methods dealt with in the text. Adaptive Signal Models: Theory, Algorithms and Audio Applications serves as an excellent reference for researchers of signal processing and may be used as a text for advanced courses on the topic.
Automatic modulation recognition is a rapidly evolving area of signal analysis. In recent years, interest from the academic and military research institutes has focused around the research and development of modulation recognition algorithms. Any communication intelligence (COMINT) system comprises three main blocks: receiver front-end, modulation recogniser and output stage. Considerable work has been done in the area of receiver front-ends. The work at the output stage is concerned with information extraction, recording and exploitation and begins with signal demodulation, that requires accurate knowledge about the signal modulation type. There are, however, two main reasons for knowing the current modulation type of a signal; to preserve the signal information content and to decide upon the suitable counter action, such as jamming. Automatic Modulation Recognition of Communications Signals describes in depth this modulation recognition process. Drawing on several years of research, the authors provide a critical review of automatic modulation recognition. This includes techniques for recognising digitally modulated signals. The book also gives comprehensive treatment of using artificial neural networks for recognising modulation types. Automatic Modulation Recognition of Communications Signals is the first comprehensive book on automatic modulation recognition. It is essential reading for researchers and practising engineers in the field. It is also a valuable text for an advanced course on the subject.
This book constitutes the Final Report of COST Action 279, Analysis and DesignofAdvancedMultiserviceNetworkssupportingMultimedia, Mobility, andInterworking, a guided tour of the state-of-the-art work on diverse aspects of modern telecommunications networks design developed within this Action during the four years of its operation, started on July 1, 2001, and ended on June 30, 2005. As stated in its founding charter, its Memorandum of Understanding, the work area of COST 279 is the analysis, design, and control aspects of prese- day networks-quite a wide scope. Behind the unifying fac, ade put on by the Internet Protocol (IP) network layer, todays networks hide a mess of hete- geneity: heterogeneity at the level of applications, both concerning the traf?c they produce and the network Quality of Service (QoS) they require, and h- erogeneity at the level of network component subsystems, in particular an - creasingly important mobile/wireless access segment. A common ground for the treatment of this disparate set of topics was given by the strong meth- ological component contained in the approach followed in COST 279, with importance placed on the development and application, whenever possible, of analytical techniques and models for the mathematical understanding of the systems under study. The results expected from the Action ranged thus from mathematical models and algorithms as entities of own interest to the und- standing of systembehavior via their application."
This book provides the knowledge and good design practice for the
design or test engineer to take the necessary measures to improve
EMC performance and therefore the chance of achieving compliance,
early on in the design process.
The book presents the proceedings of four conferences: The 19th International Conference on Security & Management (SAM'20), The 19th International Conference on Wireless Networks (ICWN'20), The 21st International Conference on Internet Computing & Internet of Things (ICOMP'20), and The 18th International Conference on Embedded Systems, Cyber-physical Systems (ESCS'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the tracks on security & management, wireless networks, internet computing and IoT, and embedded systems as well as cyber-physical systems; Features papers from SAM'20, ICWN'20, ICOMP'20 and ESCS'20.
This book introduces wireless personal communications from the point of view of wireless communication system researchers. Existing sources on wireless communications put more emphasis on simulation and fundamental principles of how to build a study model. In this volume, the aim is to pass on to readers as much knowledge as is essential for completing model building of wireless communications, focusing on wireless personal area networks (WPANs). This book is the first of its kind that gives step-by-step details on how to build the WPANs simulation model. It is most helpful for readers to get a clear picture of the whole wireless simulation model by being presented with many study models. The book is also the first treatise on wireless communication that gives a comprehensive introduction to data-length complexity and the computational complexity of the processed data and the error control schemes. This volume is useful for all academic and technical staff in the fields of telecommunications and wireless communications, as it presents many scenarios for enhancing techniques for weak error control performance and other scenarios for complexity reduction of the wireless data and image transmission. Many examples are given to help readers to understand the material covered in the book. Additional resources such as the MATLAB codes for some of the examples also are presented.
Applications of some selected soft computing methods to acoustics
and sound engineering are presented in this book. The aim of this
research study is the implementation of soft computing methods to
musical signal analysis and to the recognition of musical sounds
and phrases. Accordingly, some methods based on such learning
algorithms as neural networks, rough sets and fuzzy-logic were
conceived, implemented and tested. Additionally, the
above-mentioned methods were applied to the analysis and
verification of subjective testing results. The last problem
discussed within the framework of this book was the problem of
fuzzy control of the classical pipe organ instrument.
Recently, we proposed a completely novel and efficient way to design differential beamforming algorithms for linear microphone arrays. Thanks to this very flexible approach, any order of differential arrays can be designed. Moreover, they can be made robust against white noise amplification, which is the main inconvenience in these types of arrays. The other well-known problem with linear arrays is that electronic steering is not really feasible. In this book, we extend all these fundamental ideas to circular microphone arrays and show that we can design small and compact differential arrays of any order that can be electronically steered in many different directions and offer a good degree of control of the white noise amplification problem, high directional gain, and frequency-independent response. We also present a number of practical examples, demonstrating that differential beamforming with circular microphone arrays is likely one of the best candidates for applications involving speech enhancement (i.e., noise reduction and dereverberation). Nearly all of the material presented is new and will be of great interest to engineers, students, and researchers working with microphone arrays and their applications in all types of telecommunications, security and surveillance contexts.
This proceedings book features selected papers on 12 themes, including telecommunication, power systems, digital signal processing, robotics, control systems, renewable energy, power electronics, soft computing and more. Covering topics such as optoelectronic oscillator at S-band and C-band for 5G telecommunications, neural networks identification of eleven types of faults in high voltage transmission lines, cyber-attack mitigation on smart low voltage distribution grids, optimum load of a piezoelectric-based energy harvester, the papers present interesting ideas and state-of-the-art overviews.
Multi-point Cooperative Communication Systems: Theory and Applications mainly discusses multi-point cooperative communication technologies which are used to overcome the long-standing problem of limited transmission rate caused by the inter-point interference. Instead of combating the interference, recent progress in both academia and industrial standardizations has evolved to adopt the philosophy of "exploiting" the interference to improve the transmission rate by cooperating among multiple points. This book addresses the multi-point cooperative communication system systematically giving the readers a clear picture of the technology map and where the discussed schemes may fit. This book includes not only the theories of the paradigm-shifting multi-point cooperative communication, but also the designs of sub-optimal cooperative communication schemes for practical systems. Ming Ding is a senior researcher at Sharp Laboratories of China; Hanwen Luo is a professor at Shanghai Jiao Tong University.
This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed. Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of these filters are analyzed in terms of their noise reduction capabilities and desired signal distortion, and the analyses are validated and further explored in simulations.
Grid architectures, which are viewed as tools for the integration of distributed resources, play a significant role as managers of computational resources, but also as aggregators of measurement instrumentation and pervasive large-scale data acquisition platforms. The functionality of a grid architecture allows managing, maintaining, and exploiting hetereogeneous instrumentation and acquisition devices in a unifed way by providing standardized interfaces and common work environments to their users. This result is achieved through the properties of isolation from the physical network and from the peculiarites of the instrumentation granted by standard middleware together with secure and flexibile mechanisms which seek, access, and aggregate distributed resources. This book focuses on a number of aspects related to the effective exploitation of remote instrumentation on the grid. These include middleware architecture, high speed networking in support of grid applications, wireless grid for acquisition devices and sensor networks, quality of service provisioning for real time control, and measurement instrumentation.
Worldwide, there is considerable interest in postal and delivery economics. Governments, particularly in the European Union, are examining closely the roles of the two systems and how best to regulate them. This volume brings together 20 essays originally presented at the 12th Conference on Postal and Delivery Economics held in Cork, Ireland in June 2004. Contributors included are researchers, practitioners, and senior managers from throughout the world.
This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
"The 1,000 Hour War" was marked by unprecedented speed and force. This book adopts the view that the telecommunications technologies responsible for guiding smart bombs and Patriot missiles to their targets were the same marvels responsible for transmitting to news agencies around the world information about the progress of the war. "The 1,000 Hour War "was a unique case of military action in that it owed both its prosecution and its coverage specifically to satellites, computers, cellular telephones, microwave relay stations, and a myriad of similar technologies.
Information, Coding and Mathematics is a classic reference for both professional and academic researchers working in error-correction coding and decoding, Shannon theory, cryptography, digital communications, information security, and electronic engineering. The work represents a collection of contributions from leading experts in turbo coding, cryptography and sequences, Shannon theory and coding bounds, and decoding theory and applications. All of the contributors have individually and collectively dedicated their work as a tribute to the outstanding work of Robert J. McEliece. Information, Coding and Mathematics covers the latest advances in the widely used and rapidly developing field of information and communication technology.
This book presents the combined proceedings of the 12th International Conference on Multimedia and Ubiquitous Engineering (MUE 2018) and the 13th International Conference on Future Information Technology (Future Tech 2018), both held in Salerno, Italy, April 23 - 25, 2018. The aim of these two meetings was to promote discussion and interaction among academics, researchers and professionals in the field of ubiquitous computing technologies. These proceedings reflect the state of the art in the development of computational methods, involving theory, algorithms, numerical simulation, error and uncertainty analysis and novel applications of new processing techniques in engineering, science, and other disciplines related to ubiquitous computing.
This book was undertaken to provide a text and reference on the theory and practice of the FFT and its common usage. This book is organized in only four chapters, and is intended as a tutorial on the use of the FFf and its trade space. The trade space of the FFT is the parameters in its usage and the relationships between them - the sampie rate, the total number of points or the interval over which processing occurs in a single FFf, the selectivity of tuning to a given frequency over signals out-of-band, and the bandwidth over which a signal appears. The examples given in this text are in FORTRAN 9512003. FORTRAN 2003 was frozen as a standard while this work was in progress. The listings given here are intended as an aid in understanding the FFT and associated algorithms such as spectral window weightings, with the goal of making the best of them more accessible to the reader. The code I use here provides a simple bridge between the material in the text and implementation in FORTRAN 2003, C++, Java, MATLAB (c), and other modem languages. The examples are sufficiently simple to be translated into older languages such as C and FORTRAN 77 if desired. |
![]() ![]() You may like...
Academic Press Library in Signal…
Sergios Theodoridis, Rama Chellappa
Hardcover
R4,319
Discovery Miles 43 190
|