![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Building construction & materials > General
This book gathers peer-reviewed contributions presented at the 3rd RILEM Spring Convention and Conference, held at Guimaraes and hosted by the University of Minho, Portugal, on March 9-14, 2020. The theme of the Conference was "Ambitioning a Sustainable Future for Built Environment: comprehensive strategies for unprecedented challenges", which was aimed at discussing current challenges and impacts of the built environment on sustainability. The present volume is dedicated to the topic "New materials and structures for ultra-durability", which covers current scientific and technological developments aimed at improving knowledge about degradation mechanisms in construction materials, as well as to the development of new materials with extreme durability. Novel special materials for extreme environments or extreme loading conditions are also included, as well as novel approaches to improve the performance and durability of currently common construction materials. The following subtopics are included: general purpose, constructions, infrastructures and facilities; extreme environments and extreme events; transport and deterioration mechanisms, characterization and mitigation; Supplementary Cementitious Materials, admixtures, additions and other emerging material optimization strategies; smart materials for durable structures.
Concrete is at something of a crossroads: there are many opportunities and some threats. For those opportunities to change into beneficial practice, engineers, material scientists, architects manufacturers and suppliers must focus on the changes that are required to champion concrete and maintain its dominance within the global construction industry. The Concrete Technology Unit (CTU) of the University of Dundee organised this Congress to address these changes, under the theme Global Construction: Ultimate Concrete Opportunities 5-7 July 2005.
This book presents select proceedings of the 5th International Conference on Advances in Civil Engineering (ICACE 2020), covering basic civil engineering branches. The book covers some hands-on articles on different realistic problems in civil engineering. It highlights the current application of advanced civil engineering knowledge in developing countries. Various topics covered include construction and building materials, eco-friendly ground improvement, water and wastewater management, solid waste management, durability of concrete structures, various aspects of foundation engineering, transportation engineering & planning scenarios in developing countries, and highway materials. A few articles also discussed the advancement in civil engineering fields from global perspectives too. The book will be useful for professionals and researchers working in the area of civil engineering.
This book presents the application of Polymer-Silica Based Composites in the Construction Industry providing the fundamental framework and knowledge needed for the sustainable and efficient use of these composites as building and structural materials. It also includes characterization of prepared materials to ascertain mechanical, chemical, and physical properties and analyses results obtained using similar methods. Topics such as life cycle analysis of plastics, application of plastics in construction and elimination of plastic wastes are also discussed. The book also provides information on the outlook and competitiveness of emerging composites materials. Covers theory, preparation and characterizations of polymer-silica based composites for green construction. Discusses technology, reliability, manufacturing cost and environmental impact. Reviews the classification, application, and processing of polymer-silica composites. Gives a deeper analysis on the various tests carried out on polymer-silica composite. Highlights role of such composites in the Industry 4.0 and emerging technologies. This book is aimed at graduate students and researchers in civil engineering, built environment, construction materials, and materials science.
Durability and service life design of concrete constructions have considerable socio-economic and environmental consequences, in which the permeability of concrete to aggressive intruders plays a vital role. Concrete Permeability and Durability Performance provides deep insight into the permeability of concrete, moving from theory to practice, and presents over 20 real cases, such as Tokyo's Museum of Western Art, Port of Miami Tunnel and Hong Kong-Zhuhai-Macao sea-link, including field tests in the Antarctic and Atacama Desert. It stresses the importance of site testing for a realistic durability assessment and details the "Torrent Method" for non-destructive measurement of air-permeability. It also delivers answers for some vexing questions: Should the coefficient of permeability be expressed in m(2) or m/s? How to get a "mean" pore radius of concrete from gas-permeability tests? Why should permeability preferably be measured on site? How can service life of reinforced concrete structures be predicted by site testing of gas-permeability and cover thickness? Practitioners will find stimulating examples on how to predict the coming service life of new structures and the remaining life of existing structures, based on site testing of air-permeability and cover thickness. Researchers will value theoretical principles, testing methods, as well as how test results reflect the influence of concrete mix composition and processing.
< p=""> This highly informative and carefully presented book focuses on the fields of ergonomics/human factors and discusses the future of the community vis-a-vis health problems, productivity, aging, etc. Ergonomic intercession must be seen in light of its effect on productivity because ergonomic solutions will improve productivity as the reduction of environmental stressors, awkward postures and efforts lead to a reduction in task execution time. The book provides promising evidence that the field of ergonomics continues to thrive and develop deeper insights into how work environments, products and systems can be developed to meet needs, demands and limitations of humans and how they can support productivity improvements. Some of the themes covered are anthropometry and workplace design, biomechanics and modelling in ergonomics, cognitive and environmental ergonomics, ergonomic intervention and productivity, ergonomics in transport, mining, agriculture and forestry, health systems, work physiology and sports ergonomics, etc. This book is beneficial to academicians, policymakers and the industry alike. ^
Collaborative virtual environments (CVEs) are multi-user virtual realities which actively support communication and co-operation. This book offers a comprehensive reference volume to the state-of-the-art in the area of design studies in CVEs. It is an excellent mix of contributions from over 25 leading researcher/experts in multiple disciplines from academia and industry, providing up-to-date insight into the current research topics in this field as well as the latest technological advancements and the best working examples. Many of these results and ideas are also applicable to other areas such as CVE for design education. Overall, this bookserves asan excellent reference for postgraduate students, researchers and practitioners who need a comprehensive approach to study the design behaviours in CVEs. It is also a useful and informative source of materials for those interested in learning more on using/developing CVEs to support design and design collaboration. "
Deals with basic level of the structural analysis (i.e., types of structures and loads, material and section properties up to the standard level including analysis of determinate and indeterminate structures) Focuses on generalized coordinate system, Lagrangian and Hamiltonian mechanics, as an alternative form of studying the subject Introduces structural indeterminacy and degrees of freedom with large number of worked out examples Covers fundamentals of matrix theory of structural analysis Reviews energy principles and their relationship to calculating structural deflections
This text closes the gap between traditional textbooks on structural dynamics and how structural dynamics is practiced in a world driven by commercial software, where performance-based design is increasingly important. The book emphasizes numerical methods, nonlinear response of structures, and the analysis of continuous systems (e.g., wave propagation). Fundamentals of Structural Dynamics: Theory and Computation builds the theory of structural dynamics from simple single-degree-of-freedom systems through complex nonlinear beams and frames in a consistent theoretical context supported by an extensive set of MATLAB codes that not only illustrate and support the principles, but provide powerful tools for exploration. The book is designed for students learning structural dynamics for the first time but also serves as a reference for professionals throughout their careers.
This book comprises select peer-reviewed papers presented at the International Conference on Sustainable Development through Engineering Innovations (SDEI) 2020. It presents recent advances, new directions, and opportunities for sustainable and resilient approaches to design and protect the built-environment through engineering innovations & interventions. The topics covered are highly diverse and include all civil engineering and construction-related aspects such as construction and environmental Issues, durability and survivability under extreme conditions, design of new materials for sustainability, eco-efficient and ultra-high performance cementitious materials, embedded structural and foundation systems and environmental geomechanics. The book will be of potential interest to the researchers and students in the fields of civil engineering, architecture and sustainable development.
This book gathers the latest advances, innovations, and applications in the field of sustainable energy systems, as presented by researchers and engineers at the International Conference Sustainable Energy Systems: Innovative Perspectives (SES), held in Saint-Petersburg, Russia, on October 29-30, 2020. It covers highly diverse topics, including applications of renewable energy sources, recycling of solid municipal and industrial waste, circular economy based on agricultural waste, energy-efficient and sustainable buildings, innovation management and technologies of sustainable cities, sustainable construction, creative construction technology and materials, construction simulation and virtual construction, BIM and rapid prototyping for construction, consumption practices in the digital era, sustainable operations management, and supply chain management in the digital era. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
This book gathers peer-reviewed contributions presented at the 3rd National Conference on Structural Engineering and Construction Management (SECON'19), held in Angamaly, Kerala, India, on 15-16 May 2019. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
Fully up to date with the latest IET Wiring Regulations (BS 7671) Provides easy to read and ready reference guidance on the Regulations without having to wade through the Regs themselves Handy Pocket Book format
Climate Adaptation Engineering defines the measures taken to reduce vulnerability and increase the resiliency of built infrastructure. This includes enhancement of design standards, structural strengthening, utilisation of new materials, and changes to inspection and maintenance regimes, etc. The book examines the known effects and relationships of climate change variables on infrastructure and risk-management policies. Rich with case studies, this resource will enable engineers to develop a long-term, self-sustained assessment capacity and more effective risk-management strategies. The book's authors also take a long-term view, dealing with several aspects of climate change. The text has been written in a style accessible to technical and non-technical readers with a focus on practical decision outcomes.
Geotechnical Investigation and Improvement of Ground Conditions covers practical information on ground improvement and site investigation, considering rock properties and engineering geology and its relation to construction. The book covers geotechnical investigation for construction projects, including classic case studies with geotechnical significance. Additional sections cover soil compaction, soil stabilization, drainage and dewatering, grouting methods, the stone column method, geotextiles, fabrics and earth reinforcement, miscellaneous methods and tools for ground improvement, geotechnical investigation for construction projects, and forensic geotechnical engineering. Final sections present a series of site-specific case studies.
The first volume of a new series which will describe materials according to types and uses and proper installation or application and cover the different needs of architects, engineers, owners, and contractors. Includes names, addresses, and telephone numbers of relevant information sources. Annotat
The book deals with modern theoretical concepts related to the impact of fly ash and metakaolin admixtures on structure formation processes of concrete. Results of the effect of fly ash, metakaolin and their composition on properties of self-compacting and self-leveling concrete are presented. Based on mathematical models, obtained using mathematical experiments planning methodology, the impact of the main factors and their combination on workability, strength and other properties that determine efficiency and durability of concrete are analyzed. Using calculated dependencies, a methodology for designing optimal compositions of concrete containing active mineral admixtures and superplasticizers is proposed. Features of industrial production of concrete for the proposed compositions are discussed. The book is intended for specialists working in the production of concrete and reinforced concrete products and elements. It can also be used by construction engineers to design compositions of cost-effective self-compacting and self-leveling concrete as well as to determine the rational direction of using technogenic raw materials like ash and metakaolin.
This book describes how, given the global challenge of a shortage of natural resources in the 21st century, the recycling of waste concrete is one of the most important means of implementing sustainable construction development strategies. Firstly, the book presents key findings on the micro- and meso-structure of recycled aggregate concrete (RAC), while the second part focuses on the mechanical properties of RAC: the strength, elastic modulus, Poisson's ratio, stress-strain curve, etc. The third part of the book explores research on the durability of RAC: carbonization, chloride penetration, shrinkage and creep. It then presents key information on the mechanical behavior and seismic performance of RAC elements and structures: beams, columns, slabs, beam-column joints, and frames. Lastly, the book puts forward design guidelines for recycled aggregate concrete structures. Taken as a whole, the research results - based on a series of investigations the author has condu cted on the mechanical properties, durability and structural performance of recycled aggregate concrete (RAC) over the past 10 years - demonstrate that, with proper design and construction, it is safe and feasible to utilize RAC structures in civil engineering applications. The book will greatly benefit researchers, postgraduates, and engineers in civil engineering with an interest in this field.
The ISO 9000 family of quality standards has been adopted world-wide as a framework for building better relationships between suppliers and customers. Originally a manufacturing-industry concern, quality is now acknowledged to be a key issue for the construction sector whose clients increasingly demand quality certification. This book explains the concepts and practice of quality assurance and management in construction. Clearly written and well illustrated, with plenty of sample quality system documents and other pro-forma, this book will make the daunting task of developing, implementing and managing a quality system a great deal easier for contractors. This is practical guide for building and construction contractors and sub-contractors, project managers and other construction professionals. Also for undergraduate and postgraduate students of building, construction management and project management.
This book comprises the proceedings of the International Conference on Green Buildings and Sustainable Engineering (GBSE 2019), which focused on the theme "Ecotechnological and Digital Solutions for Smart Cities". The papers included address all aspects of green buildings and sustainability practices in civil engineering, and focus on ways and means of reducing pollution and degradation of the environment through efficient usage of energy and water. The book will prove a valuable reference resource for researchers, practitioners, and policy makers.
Advanced Design Examples of Seismic Retrofit of Structures provides insights on the problems associated with the seismic retrofitting of existing structures. The authors present various international case studies of seismic retrofitting projects and the different possible strategies on how to handle complex problems encountered. Users will find tactics on a variety of problems that are commonly faced, including problems faced by engineers and authorities who have little or no experience in the practice of seismic retrofitting.
This book gathers peer-reviewed contributions presented at the 3rd RILEM Spring Convention and Conference, held at Guimaraes and hosted by the University of Minho, Portugal, on March 9-14, 2020. The theme of the Conference was "Ambitioning a Sustainable Future for Built Environment: comprehensive strategies for unprecedented challenges", which was aimed at discussing current challenges and impacts of the built environment on sustainability. The present volume is dedicated to the topic "Strategies for a resilient built environment", which covers the current and emerging approaches that lead to an optimized design and maintenance of constructions and systems. It includes the development of service life models and life cycle design, in order to maximise longevity and level of service while minimising the environmental impact of constructions and systems. It also includes the analysis and design of larger systems, such as communities, cities or regions, aiming at reducing risk and increasing resilience. The following subtopics are included: resilience and robustness of the built environment and communities at local and global scales; risk based inspection and maintenance; life cycle analysis and service models; performance based design; improved design strategies by integrating materials and structures.
Design of Integrally-Attached Timber Plate Structures outlines a new design methodology for digitally fabricated spatial timber plate structures, presented with examples from recent construction projects. It proposes an innovative and sustainable design methodology, algorithmic geometry processing, structural optimization, and digital fabrication; technology transfer and construction are formulated and widely discussed. The methodology relies on integral mechanical attachment whereby the connection between timber plates is established solely through geometric manipulation, without additional connectors, such as nails, screws, dowels, adhesives, or welding. The transdisciplinary design framework for spatial timber plate structures brings together digital architecture, computer science, and structural engineering, covering parametric modeling and architectural computational design, geometry exploration, the digital fabrication assembly of engineered timber panels, numerical simulations, mechanical characterization, design optimization, and performance improvement. The method is demonstrated through different prototypes, physical models, and three build examples, focusing specifically on the design of the timber-plate roof structure of 23 large span arches called the Annen Headquarters in Luxembourg. This is useful for the architecture, engineering, and construction (AEC) sector and shows how new structural optimization processes can be reinvented through geometrical adaptions to control global and local geometries of complex structures. This text is ideal for structural engineering professionals and architects in both industry and academia, and construction companies.
This book presents select proceedings of the National Conference on Advances in Sustainable Construction Materials (ASCM 2019) held at the National Institute of Technology, Warangal, India. The book includes contributions from academics and practitioners on low-energy cement technologies, innovative materials and structural technologies towards cost-effective, environment friendly, durable, energy-efficient, and sustainable construction. The topics covered emphasize on cutting-edge, economically viable, and sustainable solutions with an aim to increase profitability, and decrease construction time and overall impact on the built environment. The book will be useful for researchers and practitioners interested in sustainable construction and allied fields.
On the First Edition: "The book is a success in providing a comprehensive introduction to the use of aluminum structures . . . contains lots of useful information." "A must for the aluminum engineer. The authors are to be commended for their painstaking work." Technical guidance and inspiration for designing aluminum structures Aluminum Structures, Second Edition demonstrates how strong, lightweight, corrosion-resistant aluminum opens up a whole new world of design possibilities for engineering and architecture professionals. Keyed to the revised Specification for Aluminum Structures of the 2000 edition of the Aluminum Design Manual, it provides quick look-up tables for design calculations; examples of recently built aluminum structures–from buildings to bridges; and a comparison of aluminum to other structural materials, particularly steel. Topics covered include:
|
You may like...
Modern Earth Buildings - Materials…
M.R. Hall, R. Lindsay, …
Hardcover
R5,709
Discovery Miles 57 090
Eco-efficient Masonry Bricks and Blocks…
Fernando Pacheco Torgal, Paulo B. Lourenco, …
Hardcover
R5,557
Discovery Miles 55 570
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,082
Discovery Miles 50 820
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,590
Discovery Miles 25 900
|