![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design > General
It gives me immense pleasure to introduce this timely handbook to the research/- velopment communities in the ?eld of signal processing systems (SPS). This is the ?rst of its kind and represents state-of-the-arts coverage of research in this ?eld. The driving force behind information technologies (IT) hinges critically upon the major advances in both component integration and system integration. The major breakthrough for the former is undoubtedly the invention of IC in the 50's by Jack S. Kilby, the Nobel Prize Laureate in Physics 2000. In an integrated circuit, all components were made of the same semiconductor material. Beginning with the pocket calculator in 1964, there have been many increasingly complex applications followed. In fact, processing gates and memory storage on a chip have since then grown at an exponential rate, following Moore's Law. (Moore himself admitted that Moore's Law had turned out to be more accurate, longer lasting and deeper in impact than he ever imagined. ) With greater device integration, various signal processing systems have been realized for many killer IT applications. Further breakthroughs in computer sciences and Internet technologies have also catalyzed large-scale system integration. All these have led to today's IT revolution which has profound impacts on our lifestyle and overall prospect of humanity. (It is hard to imagine life today without mobiles or Internets ) The success of SPS requires a well-concerted integrated approach from mul- ple disciplines, such as device, design, and application.
The exploitationof parallel processing to improve computing speeds is being examined at virtually all levels of computer science, from the study of parallel algorithms to the development of microarchitectures which employ multiple functional units. The most visible aspect of this interest in parallel processing is the commercially available multiprocessor systems which have appeared in the past decade. Unfortunately, the lack of adequate software support for the development of scientific applications that will run efficiently on multiple processors has stunted the acceptance of such systems. One of the major impediments to achieving high parallel efficiency on many data-parallel scientific applications is communication overhead, which is exemplified by cache coherency traffic and global memory overhead of interprocessors with a logically shared address space and physically distributed memory. Such techniques can be used by scientific application designers seeking to optimize code for a particular high-performance computer. In addition, these techniques can be seen as a necesary step toward developing software to support efficient paralled programs. In multiprocessor sytems with physically distributed memory, reducing communication overhead involves both data partitioning and data placement. Adaptive Data Partitioning (ADP) reduces the execution time of parallel programs by minimizing interprocessor communication for iterative data-parallel loops with near-neighbor communication. Data placement schemes are presented that reduce communication overhead. Under the loop partition specified by ADP, global data is partitioned into classes for each processor, allowing each processor to cachecertain regions of the global data set. In addition, for many scientific applications, peak parallel efficiency is achieved only when machine-specific tradeoffs between load imbalance and communication are evaluated and utilized in choosing the data partition. The techniques in this book evaluate these tradeoffs to generate optimum cyclic partitions for data-parallel loops with either a linearly varying or uniform computational structure and either neighborhood or dimensional multicast communication patterns. This tradeoff is also treated within the CPR (Collective Partitioning and Remapping) algorithm, which partitions a collection of loops with various computational structures and communication patterns. Experiments that demonstrate the advantage of ADP, data placement, cyclic partitioning and CPR were conducted on the Encore Multimax and BBN TC2000 multiprocessors using the ADAPT system, a program partitioner which automatically restructures iterative data-parallel loops. This book serves as an excellent reference and may be used as the text for an advanced course on the subject.
The primary audience for this book are advanced undergraduate students and graduate students. Computer architecture, as it happened in other fields such as electronics, evolved from the small to the large, that is, it left the realm of low-level hardware constructs, and gained new dimensions, as distributed systems became the keyword for system implementation. As such, the system architect, today, assembles pieces of hardware that are at least as large as a computer or a network router or a LAN hub, and assigns pieces of software that are self-contained, such as client or server programs, Java applets or pro tocol modules, to those hardware components. The freedom she/he now has, is tremendously challenging. The problems alas, have increased too. What was before mastered and tested carefully before a fully-fledged mainframe or a closely-coupled computer cluster came out on the market, is today left to the responsibility of computer engineers and scientists invested in the role of system architects, who fulfil this role on behalf of software vendors and in tegrators, add-value system developers, R&D institutes, and final users. As system complexity, size and diversity grow, so increases the probability of in consistency, unreliability, non responsiveness and insecurity, not to mention the management overhead. What System Architects Need to Know The insight such an architect must have includes but goes well beyond, the functional properties of distributed systems."
This book describes a circuit architecture for converting real analog signals into a digital format, suitable for digital signal processors. This architecture, referred to as multi-stage noise-shaping (MASH) Continuous-Time Sigma-Delta Modulators (CT- M), has the potential to provide better digital data quality and achieve better data rate conversion with lower power consumption. The authors not only cover MASH continuous-time sigma delta modulator fundamentals, but also provide a literature review that will allow students, professors, and professionals to catch up on the latest developments in related technology.
Recently, a variety ofresults on the complexitystatusofthegraph isomorphism problem has been obtained. These results belong to the so-called structural part of Complexity Theory. Our idea behind this book is to summarize such results which might otherwise not be easily accessible in the literature, and also, to give the reader an understanding of the aims and topics in Structural Complexity Theory, in general. The text is basically self contained; the only prerequisite for reading it is some elementary knowledge from Complexity Theory and Probability Theory. It can be used to teach a seminar or a monographic graduate course, but also parts of it (especially Chapter 1) provide a source of examples for a standard graduate course on Complexity Theory. Many people have helped us in different ways III the process of writing this book. Especially, we would like to thank V. Arvind, R.V. Book, E. May ordomo, and the referee who gave very constructive comments. This book project was especially made possible by a DAAD grant in the "Acciones In tegrada" program. The third author has been supported by the ESPRIT project ALCOM-II."
Parallel processing is seen today as the means to improve the power of computing facilities by breaking the Von Neumann bottleneck of conventional sequential computer architectures. By defining appropriate parallel computation models definite advantages can be obtained. Parallel processing is the center of the research in Europe in the field of Information Processing Systems so the CEC has funded the ESPRIT Supemode project to develop a low cost, high performance, multiprocessor machine. The result of this project is a modular, reconfigurable architecture based on !NMOS transputers: T.Node. This machine can be considered as a research, industrial and commercial success. The CEC has decided to continue to encourage manufacturers as well as research and end-users of transputers by funding other projects in this field. This book presents course papers of the Eurocourse given at the Joint Research Centre in ISPRA (Italy) from the 4th to 8 of November 1991. First we present an overview of various trends in the design of parallel architectures and specially of the T.Node with it's software development environments, new distributed system aspects and also new hardware extensions based on the !NMOS T9000 processor. In a second part, we review some real case applications in the field of image synthesis, image processing, signal processing, terrain modeling, particle physics simulation and also enhanced parallel and distributed numerical methods on T.Node.
This book provides a comprehensive survey of recent progress in the design and implementation of Networks-on-Chip. It addresses a wide spectrum of on-chip communication problems, ranging from physical, network, to application layers. Specific topics that are explored in detail include packet routing, resource arbitration, error control/correction, application mapping, and communication scheduling. Additionally, a novel bi-directional communication channel NoC (BiNoC) architecture is described, with detailed explanation. Written for practicing engineers in need of practical knowledge about the design and implementation of networks-on-chip; Includes tutorial-like details to introduce readers to a diverse range of NoC designs, as well as in-depth analysis for designers with NoC experience to explore advanced issues; Describes a variety of on-chip communication architectures, including a novel bi-directional communication channel NoC. From the Foreword: Overall this book shows important advances over the state of the art that will affect future system design as well as R&D in tools and methods for NoC design. It represents an important reference point for both designers and electronic design automation researchers and developers. --Giovanni De Micheli"
This book presents high-/mixed-voltage analog and radio frequency (RF) circuit techniques for developing low-cost multistandard wireless receivers in nm-length CMOS processes. Key benefits of high-/mixed-voltage RF and analog CMOS circuits are explained, state-of-the-art examples are studied, and circuit solutions before and after voltage-conscious design are compared. Three real design examples are included, which demonstrate the feasibility of high-/mixed-voltage circuit techniques. Provides a valuable summary and real case studies of the state-of-the-art in high-/mixed-voltage circuits and systems; Includes novel high-/mixed-voltage analog and RF circuit techniques - from concept to practice; Describes the first high-voltage-enabled mobile-TVRF front-end in 90nm CMOS and the first mixed-voltage full-band mobile-TV Receiver in 65nm CMOS;Demonstrates the feasibility of high-/mixed-voltage circuit techniques with real design examples."
This book provides the most comprehensive and consistent survey of the field of IC design for Biological Sensing and Processing. The authors describe a multitude of applications that require custom CMOS IC design and highlight the techniques in analog and mixed-signal circuit design that potentially can cross boundaries and benefit the very wide community of bio-medical engineers.
This book is intended to serve as a textbook for a second course in the im plementation (Le. microarchitecture) of computer architectures. The subject matter covered is the collection of techniques that are used to achieve the highest performance in single-processor machines; these techniques center the exploitation of low-level parallelism (temporal and spatial) in the processing of machine instructions. The target audience consists students in the final year of an undergraduate program or in the first year of a postgraduate program in computer science, computer engineering, or electrical engineering; professional computer designers will also also find the book useful as an introduction to the topics covered. Typically, the author has used the material presented here as the basis of a full-semester undergraduate course or a half-semester post graduate course, with the other half of the latter devoted to multiple-processor machines. The background assumed of the reader is a good first course in computer architecture and implementation - to the level in, say, Computer Organization and Design, by D. Patterson and H. Hennessy - and familiarity with digital-logic design. The book consists of eight chapters: The first chapter is an introduction to all of the main ideas that the following chapters cover in detail: the topics covered are the main forms of pipelining used in high-performance uniprocessors, a taxonomy of the space of pipelined processors, and performance issues. It is also intended that this chapter should be readable as a brief "stand-alone" survey."
This book describes the algorithms and computer architectures used to create and analyze photographs in modern digital cameras. It also puts the capabilities of digital cameras into context for applications in art, entertainment, and video analysis. The author discusses the entire range of topics relevant to digital camera design, including image processing, computer vision, image sensors, system-on-chip, and optics, while clearly describing the interactions between design decisions at these different levels of abstraction. Readers will benefit from this comprehensive view of digital camera design, describing the range of algorithms used to compose, enhance, and analyze images, as well as the characteristics of optics, image sensors, and computing platforms that determine the physical limits of image capture and computing. The content is designed to be used by algorithm designers and does not require an extensive background in optics or electronics.
This book guides readers through the design of hardware architectures using VHDL for digital communication and image processing applications that require performance computing. Further it includes the description of all the VHDL-related notions, such as language, levels of abstraction, combinational vs. sequential logic, structural and behavioral description, digital circuit design, and finite state machines. It also includes numerous examples to make the concepts presented in text more easily understandable.
Component Models and Systems for Grid Applications is the essential reference for the most current research on Grid technologies. This first volume of the CoreGRID series addresses such vital issues as the architecture of the Grid, the way software will influence the development of the Grid, and the practical applications of Grid technologies for individuals and businesses alike. Part I of the book, "Application-Oriented Designs," focuses on development methodology and how it may contribute to a more component-based use of the Grid. "Middleware Architecture," the second part, examines portable Grid engines, hierarchical infrastructures, interoperability, as well as workflow modeling environments. The final part of the book, "Communication Frameworks," looks at dynamic self-adaptation, collective operations, and higher-order components. With Component Models and Systems for Grid Applications, editors Vladimir Getov and Thilo Kielmann offer the computing professional and the computing researcher the most informative, up-to-date, and forward-looking thoughts on the fast-growing field of Grid studies.
This book provides an overview of current Intellectual Property (IP) based System-on-Chip (SoC) design methodology and highlights how security of IP can be compromised at various stages in the overall SoC design-fabrication-deployment cycle. Readers will gain a comprehensive understanding of the security vulnerabilities of different types of IPs. This book would enable readers to overcome these vulnerabilities through an efficient combination of proactive countermeasures and design-for-security solutions, as well as a wide variety of IP security and trust assessment and validation techniques. This book serves as a single-source of reference for system designers and practitioners for designing secure, reliable and trustworthy SoCs.
Cache And Interconnect Architectures In Multiprocessors Eilat, Israel May 25-261989 Michel Dubois UniversityofSouthernCalifornia Shreekant S. Thakkar SequentComputerSystems The aim of the workshop was to bring together researchers working on cache coherence protocols for shared-memory multiprocessors with various interconnect architectures. Shared-memory multiprocessors have become viable systems for many applications. Bus based shared-memory systems (Eg. Sequent's Symmetry, Encore's Multimax) are currently limited to 32 processors. The fIrst goal of the workshop was to learn about the performance ofapplications on current cache-based systems. The second goal was to learn about new network architectures and protocols for future scalable systems. These protocols and interconnects would allow shared-memory architectures to scale beyond current imitations. The workshop had 20 speakers who talked about their current research. The discussions were lively and cordial enough to keep the participants away from the wonderful sand and sun for two days. The participants got to know each other well and were able to share their thoughts in an informal manner. The workshop was organized into several sessions. The summary of each session is described below. This book presents revisions of some of the papers presented at the workshop."
Instruction-Level Parallelism presents a collection of papers that attempts to capture the most significant work that took place during the 1980s in the area of instruction-level (ILP) parallel processing. The papers in this book discuss both compiler techniques and actual implementation experience on very long instruction word (VLIW) and superscalar architectures.
This book is devoted to logic synthesis and design techniques for asynchronous circuits. It uses the mathematical theory of Petri Nets and asynchronous automata to develop practical algorithms implemented in a public domain CAD tool. Asynchronous circuits have so far been designed mostly by hand, and are thus much less common than their synchronous counterparts, which have enjoyed a high level of design automation since the mid-1970s. Asynchronous circuits, on the other hand, can be very useful to tackle clock distribution, modularity, power dissipation and electro-magnetic interference in digital integrated circuits. This book provides the foundation needed for CAD-assisted design of such circuits, and can also be used as the basis for a graduate course on logic design.
This book aids in the rehabilitation of the wrongfully deprecated work of William Parry, and is the only full-length investigation into Parry-type propositional logics. A central tenet of the monograph is that the sheer diversity of the contexts in which the mereological analogy emerges - its effervescence with respect to fields ranging from metaphysics to computer programming - provides compelling evidence that the study of logics of analytic implication can be instrumental in identifying connections between topics that would otherwise remain hidden. More concretely, the book identifies and discusses a host of cases in which analytic implication can play an important role in revealing distinct problems to be facets of a larger, cross-disciplinary problem. It introduces an element of constancy and cohesion that has previously been absent in a regrettably fractured field, shoring up those who are sympathetic to the worth of mereological analogy. Moreover, it generates new interest in the field by illustrating a wide range of interesting features present in such logics - and highlighting these features to appeal to researchers in many fields.
This book concentrates on the quality of electronic products. Electronics in general, including semiconductor technology and software, has become the key technology for wide areas of industrial production. In nearly all expanding branches of industry electronics, especially digital electronics, is involved. And the spread of electronic technology has not yet come to an end. This rapid development, coupled with growing competition and the shorter innovation cycle, have caused economic problems which tend to have adverse effects on quality. Therefore, good quality at low cost is a very attractive goal in industry today. The demand for better quality continues along with a demand for more studies in quality assurance. At the same time, many companies are experiencing a drop in profits just when better quality of their products is essential in order to survive against the competition. There have been many proposals in the past to improve quality without increase in cost, or to reduce cost for quality assurance without loss of quality. This book tries to summarize the practical content of many of these proposals and to give some advice, above all to the designer and manufacturer of electronic devices. It mainly addresses practically minded engineers and managers. It is probably of less interest to pure scientists. The book covers all aspects of quality assurance of components used in electronic devices. Integrated circuits (lCs) are considered to be the most important components because the degree of integration is still rising.
This book addresses challenges faced by both the algorithm designer
and the chip designer, who need to deal with the ongoing increase
of algorithmic complexity and required data throughput for today s
mobile applications. The focus is on implementation aspects and
implementation constraints of individual components that are needed
in transceivers for current standards, such as UMTS, LTE, WiMAX and
DVB-S2. The application domain is the so called outer receiver,
which comprises the channel coding, interleaving stages, modulator,
and multiple antenna transmission. Throughout the book, the focus
is on advanced algorithms that are actually in use
Microsystem technology (MST) integrates very small (up to a few nanometers) mechanical, electronic, optical, and other components on a substrate to construct functional devices. These devices are used as intelligent sensors, actuators, and controllers for medical, automotive, household and many other purposes. This book is a basic introduction to MST for students, engineers, and scientists. It is the first of its kind to cover MST in its entirety. It gives a comprehensive treatment of all important parts of MST such as microfabrication technologies, microactuators, microsensors, development and testing of microsystems, and information processing in microsystems. It surveys products built to date and experimental products and gives a comprehensive view of all developments leading to MST devices and robots.
Term rewriting techniques are applicable to various fields of computer science, including software engineering, programming languages, computer algebra, program verification, automated theorem proving and Boolean algebra. These powerful techniques can be successfully applied in all areas that demand efficient methods for reasoning with equations. One of the major problems encountered is the characterization of classes of rewrite systems that have a desirable property, like confluence or termination. In a system that is both terminating and confluent, every computation leads to a result that is unique, regardless of the order in which the rewrite rules are applied. This volume provides a comprehensive and unified presentation of termination and confluence, as well as related properties. Topics and features: *unified presentation and notation for important advanced topics *comprehensive coverage of conditional term-rewriting systems *state-of-the-art survey of modularity in term rewriting *presentation of unified framework for term and graph rewriting *up-to-date discussion of transformational methods for proving termination of logic programs, including the TALP system This unique book offers a comprehensive and unified view of the subject that is suitable for all computer scientists, program designers, and software engineers who study and use term rewriting techniques. Practitioners, researchers and professionals will find the book an essential and authoritative resource and guide for the latest developments and results in the field. |
You may like...
Smart Manufacturing - Integrating…
Scott , M. Shemwell, Hebab A. Quazi
Hardcover
R2,416
Discovery Miles 24 160
SolidWorks Electrical 2022 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,347
Discovery Miles 13 470
Three-Dimensional Design Methodologies…
Vinod Pangracious, Zied Marrakchi, …
Hardcover
R2,685
Discovery Miles 26 850
Combinatorial Optimization Problems in…
Michael Z. Zgurovsky, Alexander A. Pavlov
Hardcover
R4,102
Discovery Miles 41 020
Mathematical Progress in Expressive…
Yoshinori Dobashi, Hiroyuki Ochiai
Hardcover
Advances in Cognitive Informatics and…
Yingxu Wang, Du Zhang, …
Hardcover
R4,056
Discovery Miles 40 560
AutoCAD Electrical 2023 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,464
Discovery Miles 14 640
|