![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design > General
Major advances in computing are occurring at an ever-increasing pace. This is especially so in the area of high performance computing (HPC), where today's supercomputer is tomorrow's workstation. High Performance Computing Systems and Applications is a record of HPCS'98, the 12th annual Symposium on High Performance Computing Systems and Applications. The quality of the conference was significantly enhanced by the high proportion of keynote and invited speakers. This book presents the latest research in HPC architecture, networking, applications and tools. Of special note are the sections on computational biology and physics. High Performance Computing Systems and Applications is suitable as a secondary text for a graduate-level course on computer architecture and networking, and as a reference for researchers and practitioners in industry.
This book describes model-based development of adaptive embedded systems, which enable improved functionality using the same resources. The techniques presented facilitate design from a higher level of abstraction, focusing on the problem domain rather than on the solution domain, thereby increasing development efficiency. Models are used to capture system specifications and to implement (manually or automatically) system functionality. The authors demonstrate the real impact of adaptivity on engineering of embedded systems by providing several industrial examples of the models used in the development of adaptive embedded systems.
This book provides readers with an insightful guide to the design, testing and optimization of 2.5D integrated circuits. The authors describe a set of design-for-test methods to address various challenges posed by the new generation of 2.5D ICs, including pre-bond testing of the silicon interposer, at-speed interconnect testing, built-in self-test architecture, extest scheduling, and a programmable method for low-power scan shift in SoC dies. This book covers many testing techniques that have already been used in mainstream semiconductor companies. Readers will benefit from an in-depth look at test-technology solutions that are needed to make 2.5D ICs a reality and commercially viable.
The first Stanford MIPS project started as a special graduate course in 1981. That project produced working silicon in 1983 and a prototype for running small programs in early 1984. After that, we declared it a success and decided to move on to the next project-MIPS-X. This book is the final and complete word on MIPS-X. The initial design of MIPS-X was formulated in 1984 beginning in the Spring. At that time, we were unsure that RISe technology was going to have the industrial impact that we felt it should. We also knew of a number of architectural and implementation flaws in the Stanford MIPS machine. We believed that a new processor could achieve a performance level of over 10 times a VAX 11/780, and that a microprocessor of this performance level would convince academic skeptics of the value of the RISe approach. We were concerned that the flaws in the original RISe design might overshadow the core ideas, or that attempts to industrialize the technology would repeat the mistakes of the first generation designs. MIPS-X was targeted to eliminate the flaws in the first generation de signs and to boost the performance level by over a factor of five."
This book presents a state-of-the-art technique for formal verification of continuous-time Simulink/Stateflow diagrams, featuring an expressive hybrid system modelling language, a powerful specification logic and deduction-based verification approach, and some impressive, realistic case studies. Readers will learn the HCSP/HHL-based deductive method and the use of corresponding tools for formal verification of Simulink/Stateflow diagrams. They will also gain some basic ideas about fundamental elements of formal methods such as formal syntax and semantics, and especially the common techniques applied in formal modelling and verification of hybrid systems. By investigating the successful case studies, readers will realize how to apply the pure theory and techniques to real applications, and hopefully will be inspired to start to use the proposed approach, or even develop their own formal methods in their future work.
Software startups make global headlines every day. As technology companies succeed and grow, so do their engineering departments. In your career, you'll may suddenly get the opportunity to lead teams: to become a manager. But this is often uncharted territory. How can you decide whether this career move is right for you? And if you do, what do you need to learn to succeed? Where do you start? How do you know that you're doing it right? What does "it" even mean? And isn't management a dirty word? This book will share the secrets you need to know to manage engineers successfully. Going from engineer to manager doesn't have to be intimidating. Engineers can be managers, and fantastic ones at that. Cast aside the rhetoric and focus on practical, hands-on techniques and tools. You'll become an effective and supportive team leader that your staff will look up to. Start with your transition to being a manager and see how that compares to being an engineer. Learn how to better organize information, feel productive, and delegate, but not micromanage. Discover how to manage your own boss, hire and fire, do performance and salary reviews, and build a great team. You'll also learn the psychology: how to ship while keeping staff happy, coach and mentor, deal with deadline pressure, handle sensitive information, and navigate workplace politics. Consider your whole department. How can you work with other teams to ensure best practice? How do you help form guilds and committees and communicate effectively? How can you create career tracks for individual contributors and managers? How can you support flexible and remote working? How can you improve diversity in the industry through your own actions? This book will show you how. Great managers can make the world a better place. Join us.
After a brief introduction to low-power VLSI design, the design space of ASIP instruction set architectures (ISAs) is introduced with a special focus on important features for digital signal processing. Based on the degrees of freedom offered by this design space, a consistent ASIP design flow is proposed: this design flow starts with a given application and uses incremental optimization of the ASIP hardware, of ASIP coprocessors and of the ASIP software by using a top-down approach and by applying application-specific modifications on all levels of design hierarchy. A broad range of real-world signal processing applications serves as vehicle to illustrate each design decision and provides a hands-on approach to ASIP design. Finally, two complete case studies demonstrate the feasibility and the efficiency of the proposed methodology and quantitatively evaluate the benefits of ASIPs in an industrial context.
This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink.The whole book provides a practical guide to implementing a variety of engineering applications from VHDL programming and co-simulation issues, to FPGA realizations of chaos generators, ANNs for chaotic time-series prediction, RNGs and chaotic secure communications for image transmission.
Used alongside the students' text, Higher National Computing 2nd
edition, this pack offers a complete suite of lecturer resource
material and photocopiable handouts for the compulsory core units
of the new BTEC Higher Nationals in Computing and IT, including the
four core units for HNC, the two additional core units required at
HND, and the Core Specialist Unit 'Quality Systems', common to both
certificate and diploma level.
ARIS (Architecture of Integrated Information Systems) is a unique and internationally renowned method for optimizing business processes and implementing application systems. This book enhances the proven ARIS concept by describing product flows and explaining how to classify modern software concepts. The importance of the link between business process organization and strategic management is stressed. Bridging the gap between the different approaches in business theory and information technology, the ARIS concept provides a full-circle approach - from the organizational design of business processes to IT implementation. Featuring SAP R/3 as well, real-world examples of various standard software solutions illustrate these concepts.
This book brings together a selection of the best papers from the sixteenth edition of the Forum on specification and Design Languages Conference (FDL), which was held in September 2013 in Paris, France. FDL is a well-established international forum devoted to dissemination of research results, practical experiences and new ideas in the application of specification, design and verification languages to the design, modeling and verification of integrated circuits, complex hardware/software embedded systems and mixed-technology systems.
Artificial Intelligence for Capital Market throws light on application of AI/ML techniques in the financial capital markets. This book discusses the challenges posed by the AI/ML techniques as these are prone to "black box" syndrome. The complexity of understanding the underlying dynamics for results generated by these methods is one of the major concerns which is highlighted in this book: Features: Showcases artificial intelligence in finance service industry Explains Credit and Risk Analysis Elaborates on cryptocurrencies and blockchain technology Focuses on optimal choice of asset pricing model Introduces Testing of market efficiency and Forecasting in Indian Stock Market This book serves as a reference book for Academicians, Industry Professional, Traders, Finance Mangers and Stock Brokers. It may also be used as textbook for graduate level courses in financial services and financial Analytics.
This work provides system architects a methodology for the implementation of x.500 and LDAP based metadirectory provisioning systems. In addition this work assists in the business process analysis that accompanies any deployment. DOC Safe Harbor
A hands-on introduction to FPGA prototyping and SoC design This Second Edition of the popular book follows the same "learning-by-doing" approach to teach the fundamentals and practices of VHDL synthesis and FPGA prototyping. It uses a coherent series of examples to demonstrate the process to develop sophisticated digital circuits and IP (intellectual property) cores, integrate them into an SoC (system on a chip) framework, realize the system on an FPGA prototyping board, and verify the hardware and software operation. The examples start with simple gate-level circuits, progress gradually through the RT (register transfer) level modules, and lead to a functional embedded system with custom I/O peripherals and hardware accelerators. Although it is an introductory text, the examples are developed in a rigorous manner, and the derivations follow strict design guidelines and coding practices used for large, complex digital systems. The new edition is completely updated. It presents the hardware design in the SoC context and introduces the hardware-software co-design concept. Instead of treating examples as isolated entities, the book integrates them into a single coherent SoC platform that allows readers to explore both hardware and software "programmability" and develop complex and interesting embedded system projects. The revised edition: Adds four general-purpose IP cores, which are multi-channel PWM (pulse width modulation) controller, I2C controller, SPI controller, and XADC (Xilinx analog-to-digital converter) controller. Introduces a music synthesizer constructed with a DDFS (direct digital frequency synthesis) module and an ADSR (attack-decay-sustain-release) envelop generator. Expands the original video controller into a complete stream-based video subsystem that incorporates a video synchronization circuit, a test pattern generator, an OSD (on-screen display) controller, a sprite generator, and a frame buffer. Introduces basic concepts of software-hardware co-design with Xilinx MicroBlaze MCS soft-core processor. Provides an overview of bus interconnect and interface circuit. Introduces basic embedded system software development. Suggests additional modules and peripherals for interesting and challenging projects. The FPGA Prototyping by VHDL Examples, Second Edition makes a natural companion text for introductory and advanced digital design courses and embedded system course. It also serves as an ideal self-teaching guide for practicing engineers who wish to learn more about this emerging area of interest.
This book presents various novel architectures for FPGA-optimized accurate and approximate operators, their detailed accuracy and performance analysis, various techniques to model the behavior of approximate operators, and thorough application-level analysis to evaluate the impact of approximations on the final output quality and performance metrics. As multiplication is one of the most commonly used and computationally expensive operations in various error-resilient applications such as digital signal and image processing and machine learning algorithms, this book particularly focuses on this operation. The book starts by elaborating on the various sources of error resilience and opportunities available for approximations on various layers of the computation stack. It then provides a detailed description of the state-of-the-art approximate computing-related works and highlights their limitations.
This book has been written for practitioners, researchers and stu dents in the fields of parallel and distributed computing. Its objective is to provide detailed coverage of the applications of graph theoretic tech niques to the problems of matching resources and requirements in multi ple computer systems. There has been considerable research in this area over the last decade and intense work continues even as this is being written. For the practitioner, this book serves as a rich source of solution techniques for problems that are routinely encountered in the real world. Algorithms are presented in sufficient detail to permit easy implementa tion; background material and fundamental concepts are covered in full. The researcher will find a clear exposition of graph theoretic tech niques applied to parallel and distributed computing. Research results are covered and many hitherto unpublished spanning the last decade results by the author are included. There are many unsolved problems in this field-it is hoped that this book will stimulate further research."
In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications in the IoT, AI, and High-Performance Computing provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.
This volume presents new directions and solutions in broadly perceived intelligent systems. An urgent need this volume has occurred as a result of vivid discussions and presentations at the "IEEE-IS 2006 The 2006 Third International IEEE Conference on Intelligent Systems" held in London, UK, September, 2006. This book is a compilation of many valuable inspiring works written by both the conference participants and some other experts in this new and challenging field.
This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management. This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions.
Supercomputers are the largest and fastest computers available at any point in time. The term was used for the first time in the New York World, March 1920, to describe "new statistical machines with the mental power of 100 skilled mathematicians in solving even highly complex algebraic problems. " Invented by Mendenhall and Warren, these machines were used at Columbia University'S Statistical Bureau. Recently, supercomputers have been used primarily to solve large-scale prob lems in science and engineering. Solutions of systems of partial differential equa tions, such as those found in nuclear physics, meteorology, and computational fluid dynamics, account for the majority of supercomputer use today. The early computers, such as EDVAC, SSEC, 701, and UNIVAC, demonstrated the feasibility of building fast electronic computing machines which could become commercial products. The next generation of computers focused on attaining the highest possible computational speeds. This book discusses the architectural approaches used to yield significantly higher computing speeds while preserving the conventional, von Neumann, machine organization (Chapters 2-4). Subsequent improvements depended on developing a new generation of computers employing a new model of computation: single-instruction multiple data (SIMD) processors (Chapters 5-7). Later machines refmed SIMD architec ture and technology (Chapters 8-9). SUPERCOMPUTER ARCHITECI'URE CHAPTER! INTRODUCTION THREE ERAS OF SUPERCOMPUTERS Supercomputers -- the largest and fastest computers available at any point in time -- have been the products of complex interplay among technological, architectural, and algorithmic developments.
Derived from industry-training classes that the author teaches at the Embedded Systems Institute at Eindhoven, the Netherlands and at Buskerud University College at Kongsberg in Norway, Systems Architecting: A Business Perspective places the processes of systems architecting in a broader context by juxtaposing the relationship of the systems architect with enterprise and management. This practical, scenario-driven guide fills an important gap, providing systems architects insight into the business processes, and especially into the processes to which they actively contribute. The book uses a simple reference model to enable understanding of the inside of a system in relation to its context. It covers the impact of tool selection and brings balance to the application of the intellectual tools versus computer-aided tools. Stressing the importance of a clear strategy, the authors discuss methods and techniques that facilitate the architect's contribution to the strategy process. They also give insight into the needs and complications of harvesting synergy, insight that will help establish an effective synergy-harvesting strategy. The book also explores the often difficult relationship between managers and systems architects. Written in an approachable style, the book discusses the breadth of the human sciences and their relevance to systems architecting. It highlights the relevance of human aspects to systems architects, linking theory to practical experience when developing systems architecting competence.
This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions.
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
The third edition of Digital Logic Techniques provides a clear and comprehensive treatment of the representation of data, operations on data, combinational logic design, sequential logic, computer architecture, and practical digital circuits. A wealth of exercises and worked examples in each chapter give students valuable experience in applying the concepts and techniques discussed. Beginning with an objective comparison between analogue and digital representation of data, the author presents the Boolean algebra framework for digital electronics, develops combinational logic design from first principles, and presents cellular logic as an alternative structure more relevant than canonical forms to VLSI implementation. He then addresses sequential logic design and develops a strategy for designing finite state machines, giving students a solid foundation for more advanced studies in automata theory. The second half of the book focuses on the digital system as an entity. Here the author examines the implementation of logic systems in programmable hardware, outlines the specification of a system, explores arithmetic processors, and elucidates fault diagnosis. The final chapter examines the electrical properties of logic components, compares the different logic families, and highlights the problems that can arise in constructing practical hardware systems.
Memory Architecture Exploration for Programmable Embedded Systems
addresses efficient exploration of alternative memory
architectures, assisted by a "compiler-in-the-loop" that allows
effective matching of the target application to the
processor-memory architecture. This new approach for memory
architecture exploration replaces the traditional black-box view of
the memory system and allows for aggressive co-optimization of the
programmable processor together with a customized memory system.
|
You may like...
Computer Architecture Tutorial Using an…
Robert Dunne
Hardcover
The System Designer's Guide to VHDL-AMS…
Peter J Ashenden, Gregory D. Peterson, …
Paperback
R2,281
Discovery Miles 22 810
Creativity in Computing and DataFlow…
Suyel Namasudra, Veljko Milutinovic
Hardcover
R4,204
Discovery Miles 42 040
Intelligent Applications for…
Kandarpa Kumar Sarma, Manash Pratim Sarma, …
Hardcover
R6,324
Discovery Miles 63 240
Advances in Delay-Tolerant Networks…
Joel J. P. C. Rodrigues
Paperback
R4,669
Discovery Miles 46 690
Clean Architecture - A Craftsman's Guide…
Robert Martin
Paperback
(1)
|