![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book presents a short introduction to the historical background to the field, the state of the art and a brief survey of the available instrumentation and the processing techniques used. The following major areas of interest in synthetic, organic and medicinal chemistry are elaborated on: transition-metal catalyzed reactions, organocatalytic transformations, heterocyclic synthesis, and photochemical reactions. Finally, selected applications in industry are also discussed. With its ample presentation of examples from recent literature, this is an essential and reliable source of information for both experienced researchers and postgraduate newcomers to the field.
This book reports on cutting-edge modeling techniques, methodologies and tools used to understand, design and engineer nanoscale communication systems, such as molecular communication systems. Moreover, it includes introductory materials for those who are new to the field. The book's interdisciplinary approach, which merges perspectives in computer science, the biological sciences and nanotechnology, will appeal to graduate students and researchers in these three areas.The book is organized into five parts, the first of which describes the fundamentals of molecular communication, including basic concepts, models and designs. In turn, the second part examines specific types of molecular communication found in biological systems, such as neuronal communication in the brain. The book continues by exploring further types of nanoscale communication, such as fluorescence resonance energy transfer and electromagnetic-based nanoscale communication, in the third part, and by describing nanomaterials and structures for practical applications in the fourth. Lastly, the book presents nanomedical applications such as targeted drug delivery and biomolecular sensing.
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.
This book provides an introduction to the biological background of heart functioning and analyzes the various materials and technologies used for the development of microfluidic systems dedicated to cell culture, with an emphasis on cardiac cells. The authors describe the characterization of microfluidic systems for cardiac cell culture and center their discussion of the use of stem cell stimulation based on four different types: electrical, biochemical, physical, and mechanical. This book is appropriate for researchers focused on on-chip technologies and heart studies, students in bioengineering and microengineering courses, and a variety of professionals, such as biotechnologists, biomedical engineers, and clinicians working in the cardiac diseases field.
Reliability of Microtechnology discusses the reliability of microtechnology products from the bottom up, beginning with devices and extending to systems. The book's focus includes but is not limited to reliability issues of interconnects, the methodology of reliability concepts and general failure mechanisms. Specific failure modes in solder and conductive adhesives are discussed at great length. Coverage of accelerated testing, component and system level reliability, and reliability design for manufacturability are also described in detail. The book also includes exercises and detailed solutions at the end of each chapter.
This book discusses microstructure-property correlations and explores key microstructure features and how they affect the properties of a material. The authors discuss the effect of manufacturing and processing routes on microstructure and properties. They identify appropriate microstructure and mechanical characterization techniques essential for developing accurate microstructure-property relationships. The techniques include high resolution imaging methods and properties measurements such as hardness, strength, elastic modulus, and fracture toughness. Current and future trends in hard and superhard material design are revealed by the authors, including nanostructured materials, biomimicry, and novel manufacturing technologies.
With this volume, Ezequiel P. M. Leiva and co-authors fill a gap in the available literature, by providing a much-needed, comprehensive review of the relevant literature for electrochemists, materials scientists and energy researchers. For the first time, they present applications of underpotential deposition (UPD) on the nanoscale, such as nanoparticles and nanocavities, as well as for electrocatalysis. They also discuss real surface determinations and layer-by-layer growth of ultrathin films, as well as the very latest modeling approaches to UPD based on nanothermodynamics, statistical mechanics, molecular dynamics and Monte-Carlo simulations.
This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.
The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).
This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided. This book also: * Provides readers with a unique approach and toolset for lab-on-a-chip development in terms of materials, fabrication techniques, and components * Discusses novel materials and techniques, such as paper-based devices and synthesis of chemical compounds on-chip * Covers the four key aspects of development: basic theory, design, fabrication, and testing * Provides readers with a comprehensive list of the most important journals, blogs, forums, and conferences where microfluidics and lab-on-a-chip news, methods, techniques and challenges are presented and discussed, as well as a list of companies providing design and simulation support, components, and/or developing lab-on-a-chip and microfluidic devices.
This volume contains the Proceedings of the First International Conference of IFToMM Italy (IFIT2016), held at the University of Padova, Vicenza, Italy, on December 1-2, 2016. The book contains contributions on the latest advances on Mechanism and Machine Science. The fifty-nine papers deal with such topics as biomechanical engineering, history of mechanism and machine science, linkages and mechanical controls, multi-body dynamics, reliability, robotics and mechatronics, transportation machinery, tribology, and vibrations.
This book presents a systemic view of nanophenomena in terms of disordered condensed media with characteristics arising at various hierarchical levels from nanoagents/nanoparticles through multiple technological interfaces to the creation of micro- or mesostructures with essential nanodimensional effects. These properties can be seen in various schemes for the functionalization of nanocarbon systems, namely, CNTs, GNRs, GNFs, carbon-based nanoaerogels, nanofoams, and so on, where nonregularities characterize surface nanointeractions and various nanointerconnects, resulting in both predictable and unpredictable effects. Beginning with nanosensing and finishing with other forms of functionalized nanomaterials, these effects will define the prospective qualities of future consumer nanoproducts and nanodevices. This book covers all aspects of nonregular nanosystems arising from the fundamental properties of disordered nanosized media, from electronic structure, surface nanophysics, and allotropic forms of carbon such as graphene and fullerenes including defect characterization, to spintronics and 3D device principles. Nonregular Nanosystems will be of interest to students and specialists in various fields of nanotechnology and nanoscience, experts on surface nanophysics and nanochemistry, as well as managers dealing with marketing of nanoproducts and consumer behavior research.
These are the Proceedings of the 6th International Symposium on Multibody Systems and Mechatronics (MUSME 2017) which was held in Florianopolis, Brazil, October 24-28, 2017. Topics addressed include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME 2017 Symposium was one of the activities of the FEIbIM Commission for Mechatronics and IFToMM technical Committees for Multibody Dynamics, Robotics and Mechatronics.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 4th International Conference on Cable-Driven Parallel Robots (CableCon 2019), held in Krakow, Poland on June 30-July 4, 2019, as part of the 5th IFToMM World Congress. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This volume of the Lecture Notes in Mobility series contains papers written by speakers at the 22nd International Forum on Advanced Microsystems for Automotive Applications (AMAA 2018) "Smart Systems for Clean, Safe and Shared Road Vehicles" that was held in Berlin, Germany in September 2018. The authors report about recent breakthroughs in electric and electronic components and systems, driver assistance, vehicle automation and electrification as well as data, clouds and machine learning. Furthermore, innovation aspects and impacts of connected and automated driving are covered. The target audience primarily comprises research experts and practitioners in industry and academia, but the book may also be beneficial for graduate students alike.
This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.
This book presents a comprehensive review of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) as tools for experimental fluid dynamics (EFD). It shares practical techniques for high-speed photography to accurately analyze multi-phase flows; in particular, it addresses the practical know-how involved in high-speed photography, including e.g. the proper setup for lights and illumination; optical systems to remove perspective distortion; and the density of tracer particles and their fluorescence in the context of PIV and PTV. In this regard, using the correct photographic technique plays a key role in the accurate analysis of the respective flow. Practical applications include bubble and liquid flow dynamics in materials processes agitated by gas injection at high temperatures, mixing phenomena due to jet-induced rotary sloshing, and wettability effects on the efficiency of the processes.
The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics. This monograph focuses on two major groups of nanomaterials, i.e.nanoparticels and nanocomposites. Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered. Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties. The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials."
This book presents the latest achievements in the theory and practice of SEMS Group interaction by scientists from the Russian Academy of Sciences. It also discusses the development of methods for the design and simulation of SEMS Group interaction based on the principles of safety, flexibility and adaptability in behavior and intelligence and parallelism in information processing, computation and control. Recently, the task has been to ensure the functioning of robots within the framework of collective collaboration, so that they function efficiently, reliably and safely in real time. The topics covered include, but are not limited to, the following: - the planning behavior of the SEMS group;- methods and principles of designing of automatic control systems;- mathematical and computer modeling group interaction;- safety, flexibility and adaptability of the SEMS Group;- information-measuring soft- and hardware. This book is intended for students, scientists and engineers specializing in the field of smart electromechanical systems and robotics.
Mechatronics, as the integrating framework of mechanical engineering, electrical engineering, computer technology, control engineering and automation forms a crucial part in the design, manufacture and maintenance of a wide range of engineering products and processes. The mechatronics itself changes rapidly in last decade, from original mixture of subfields into original approach in engineering as a technical discipline. The book you are holding is aimed to help the reader to orient in this evolving field of science and technology. "Mechatronics 2013: Recent Technological and Scientific Advances" is the fourth volume following the previous editions in 2007, 2009 and 2011, providing the comprehensive and accessible coverage of advances in mechatronics presented on the 10th International Conference Mechatronics 2013, hosted this year at the Brno University of Technology, Czech Republic. The contributions, that passed the thorough review process, give an insight into current trends in research and development among Mechatronics 2013 contributing countries, with paper topics covering design and modeling of mechatronic systems, control and automation, signal processing, robotics and others, keeping in mind the innovation benefits of mechatronics design approach, leading to the development, production and daily use of machines and devices possessing a certain degree of computer based intelligence.
The thesis covers a broad range of electronic, optical and
opto-electronic devices and various predicted physical effects. In
particular, it examines the quantum interference transistor effect
in graphene nanorings; tunable spin-filtering and spin-dependent
negative differential resistance in composite heterostructures
based on graphene and ferromagnetic materials; optical and novel
electro-optical bistability and hysteresis in compound systems and
the real-time control of radiation patterns of optical
nanoantennas. The direction of the main radiation lobe of a regular
plasmonic array can be changed abruptly by small variations in
external control parameters. This optical effect, apart from its
relevance for applications, is a revealing example of the Umklapp
process and, thus, is a visual manifestation of one of the most
fundamental laws of solid state physics: the conservation of the
quasi-momentum to within a reciprocal lattice vector. The thesis
analyzes not only results for particular device designs but also a
variety of advanced numerical methods which are extended by the
author and described in detail. These methods can be used as a
sound starting point for further research.
This book covers the state of the art of laser micro- and nanotechnology. The physical fundamentals of different processes and the application are presented. The book deals with different materials like phase change and memory alloys, thin films, polymers etc. New phenomena and mechanisms of laser-matter interaction in nano-domains are explained. This book is helpful for students, postgraduates, engineers and researches working not only in the field of laser microtechnology but also in high-tech industry, like photonics, microelectronics, information technology.
The present volume is a collection of review articles highlighting the fundamental advances made in this area by the internationally acclaimed research groups , most of them being pioneers themselves and coming together for the first time.
This book reviews advances in cutting-edge micro-/nano-electrometers, and discusses the technological challenges involved in their practical implementation. The detection of electrostatic charge has a wide range of applications in ionization chambers, bio-analyte and aerosol particle instruments, mass spectrometers, scanning tunneling microscopes, and even quantum computers. Designing micro-/nano-electrometers (also known as charge sensors) for electrometry is considered vital because of the charge sensitivity and resolution issues at micro-/nano-scales. The remarkably dynamic microelectromechanical systems (MEMSs)/nanoelectromechanical systems (NEMSs), and advances in solid-state electronics, hold considerable potential for the design and fabrication of extremely sensitive charge sensors.
This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: * Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification * Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events * Links the performance of a sensor to the various governing physical and chemical principles so readers can fully understand how a biosensor with nanoscale modified electrode surface functions. |
You may like...
Oracle Application Express for Mobile…
Roel Hartman, Christian Rokitta, …
Paperback
R1,871
Discovery Miles 18 710
Pro Oracle Application Express
John Scott, Scott Spendolini
Paperback
Database Systems: The Complete Book…
Hector Garcia-Molina, Jeffrey Ullman, …
Paperback
|