Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture > General
This book contains a selection of papers presented at the Second National Conference on Sensors held in Rome 19-21 February 2014. The conference highlighted state-of-the-art results from both theoretical and applied research in the field of sensors and related technologies. This book presents material in an interdisciplinary approach, covering many aspects of the disciplines related to sensors, including physics, chemistry, materials science, biology and applications.
Intelligent systems are systems that, given some data, are able to learn from that data. This makes it possible for complex systems to be modeled and/or for performance to be predicted. In turn, intelligent systems functionality can be controlled through learning/training, without the need for a priori knowledge of their structure. Intelligent Systems for Machine Olfaction: Tools and Methodologies introduces new, state-of-the art applications of intelligent systems to researchers and developers in the area of machine olfaction. Readers will benefit from in-depth analyses of fundamental theories, potential trends, and key literature in the field, making this work both a source of application examples that can be readily implemented and a practical guide for the implementation of solutions in other scenarios.
Dynamics is a science concerned with movement and changes. In the most general approach it relates to life processes as well as behavior in nature in rest. It governs small particles, technical objects, conversion of matter and materials but also concerns people, groups of people in their individual and, in particular, social dimension. In dynamics we always have to do with causes or stimuli for motion, the rules of reaction or behavior and its result in the form of trajectory of changes. This book is devoted to dynamics of a wide class of specific but very important objects such as electromechanical systems. This is a very rigorous discipline and has a long tradition, as its theoretical bases were formulated in the first half of the XIX century by d' Alembert, Lagrange, Hamilton, Maxwell and other prominent scientists, but their crucial results were based on previous pioneering research of others such as Copernicus, Galileo, Newton... This book in its theoretical foundations is based on the principle of least action which governs classical as well as relativistic mechanics and electromagnetism and leads to Lagrange's equations which are applied in the book as universal method to construct equations of motion of electromechanical systems. It gives common and coherent grounds to formulate mathematical models for all lumped parameters' electromechanical systems, which are vital in our contemporary industry and civilized everyday life. From these remarks it seems that the book is general and theoretical but in fact it is a very practical one concerning modern electrical drives in a broad sense, including electromechanical energy conversion, induction motor drives, brushless DC drives with a permanent magnet excitation and switched reluctance machines (SRM). And of course their control, which means shaping of their trajectories of motion using modern tools, their designed autonomy in keeping a track according to our programmed expectations. The problems presented in the book are widely illustrated by characteristics, trajectories, dynamic courses all computed by use of developed simulation models throughout the book. There are some classical subjects and the history of the discipline is discussed but finally all modern tools and means are presented and applied. More detailed descriptions follow in abstracts for the particular chapters. The author hopes kind readers will enjoy and profit from reading this book.
"Two of the most important trends in sensor development in recent years have been advances in micromachined sensing elements of all kinds, and the increase in intelligence applied at the sensor level. This book addresses both, and provides a good overview of current technology." -- I&CS
Nanorobots can be defined as intelligent systems with overall dimensions at or below the micrometer range that are made of assemblies of nanoscale components with individual dimensions ranging between 1 to 100 nm. These devices can now perform a wide variety of tasks at the nanoscale in a wide variety of fields including but not limited to fields such as manufacturing, medicine, supply chain, biology, and aerospace. Nanorobotics: Current Approaches and Techniques offers a comprehensive overview of this emerging interdisciplinary field with a wide ranging discussion that includes nano-manipulation and industrial nanorobotics, nanorobotic manipulation in biology and medicine, nanorobotic sensing, navigation and swarm behavior and CNT, and protein and DNA-based nanorobotics.
This book highlights the latest advances in AFM nano-manipulation research in the field of nanotechnology. There are numerous uncertainties in the AFM nano-manipulation environment, such as thermal drift, tip broadening effect, tip positioning errors and manipulation instability. This book proposes a method for estimating tip morphology using a blind modeling algorithm, which is the basis of the analysis of the influence of thermal drift on AFM scanning images, and also explains how the scanning image of AFM is reconstructed with better accuracy. Further, the book describes how the tip positioning errors caused by thermal drift and system nonlinearity can be corrected using the proposed landmark observation method, and also explores the tip path planning method in a complex environment. Lastly, it presents an AFM-based nano-manipulation platform to illustrate the effectiveness of the proposed method using theoretical research, such as tip positioning and virtual nano-hand.
Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. The main classes of nonlinear systems and stability methods are summarized and basic nonlinear control methods, useful in manipulator and vehicle control, are presented. Formation control of ground robots and ships is discussed. The book also deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated. Theoretical and practical aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors as part of the control system.
This book presents a universal mass-production micro/nano integrated fabrication technology, which can be used to realize micro/nano hierarchical structures on Si-based materials and flexible polymeric materials. This fabrication technology has been systematically investigated by using experimental measurements, mechanism analyses, theoretical simulations and so on. Three common materials (i.e., silicon, PDMS and Parylene-C) with micro/nano hierarchical structures have been successfully fabricated, which also show several attractive properties. Furthermore, this book introduces this fabrication technology into microenergy field, and proposes several high-performance nanogenerators, of which practical applications have also been studied in commercial electronic device and biomedical microsystem.
The book Smart Sensors and MEMS provides an unique collection of contributions on the latest achievements in sensors area and technologies that have been made by eleven internationally recognized leading experts from Czech Republic, Germany, Italy, Israel, Portugal, Switzerland, Ukraine and USA during the NATO Advanced Study Institute (ASI) in Povoa de Varzim, Portugal, from 8 to 19 September 2003. The aims of this volume are to disseminate wider and in-depth theoretical and practical knowledge about smart sensors and its applications, to create a clear consciousness about the effectiveness of MEMS technologies, advanced signal processing and conversion methods, to stimulate the theoretical and applied research in these areas, and promote the practical using of these techniques in the industry. With that in mind, a broad range of physical, chemical and biosensors design principles, technologies and applications were included in the book. It is a first attempt to describe in the same book different physical, chemical, biological sensors and MEMS technologies suitable for smart sensors creation. The book presents the state-of-the-art and gives an excellent opportunity to provide a systematic, in-depth treatment of the new and rapidly developing field of smart sensors and MEMS. The volume is an excellent guide for practicing engineers, researchers and students interested in this crucial aspect of actual smart sensor design.
This book is devoted to a wide range of problems concerning applications of nanomaterials and nanodevices as effective solutions to modern ecological problems. Leading experts in nanoscience and nanotechnology present the key theoretical, experimental and implementation issues related to the creation and utilization of novel nanoscale devices to help ensure ecological security. The authors discuss appropriate nanotechnologies for minimizing various types of risk: to human life, technogenic risk, or indeed terrorist threats. Particular emphasis is placed on defining and studying the required materials properties, and - in the field - on nanoscale devices for sensors and monitoring."
Covering the complete design cycle of nanopositioning systems, this is the first comprehensive text on the topic. The book first introduces concepts associated with nanopositioning stages and outlines their application in such tasks as scanning probe microscopy, nanofabrication, data storage, cell surgery and precision optics. Piezoelectric transducers, employed ubiquitously in nanopositioning applications are then discussed in detail including practical considerations and constraints on transducer response. The reader is then given an overview of the types of nanopositioner before the text turns to the in-depth coverage of mechanical design including flexures, materials, manufacturing techniques, and electronics. This process is illustrated by the example of a high-speed serial-kinematic nanopositioner. Position sensors are then catalogued and described and the text then focuses on control. Several forms of control are treated: shunt control, feedback control, force feedback control and feedforward control (including an appreciation of iterative learning control). Performance issues are given importance as are problems limiting that performance such as hysteresis and noise which arise in the treatment of control and are then given chapter-length attention in their own right. The reader also learns about cost functions and other issues involved in command shaping, charge drives and electrical considerations. All concepts are demonstrated experimentally including by direct application to atomic force microscope imaging. Design, Modeling and Control of Nanopositioning Systems will be of interest to researchers in mechatronics generally and in control applied to atomic force microscopy and other nanopositioning applications. Microscope developers and mechanical designers of nanopositioning devices will find the text essential reading.
Validation of computer systems is the process that assures the formal assessment and report of quality and performance measures for all the life-cycle stages of software and system development, its implementation, qualification and acceptance, operation, modification, requalification, maintenance and retirement (PICS CSV PI 011-3). It is a process that demonstrates the compliance of computer systems functional and non-functional requirements, data integrity, regulated company procedures and safety requirements, industry standards, and applicable regulatory authority's requirements. Compliance is a state of being in adherence to application-related standards or conventions or regulations in laws and similar prescriptions. This book, which is relevant to the pharmaceutical and medical devices regulated operations, provides practical information to assist in the computer validation to production systems, while highlighting and efficiently integrating worldwide regulation into the subject. A practical approach is presented to increase efficiency and to ensure that the validation of computer systems is correctly achieved.
The vast expansion of the sensor and actuator field in recent years has necessitated the creation of a handbook series to clarify scientific developments. First in the new series, Handbook of Sensors and Actuators, which will examine a broad range of topics across the discipline, this volume explores thick-film technology. The area has already achieved a high rank in the families of advanced solid sensor technologies but there has been limited acknowledgement of its future potential. This publication aims to increase the involvement of internationally recognised sensor experts by suggesting possible directions for further investigation. In this pursuit, it disseminates the data identifying the actual performances and applications of thick-film sensors manufactured all over the world and presents ideas underlying current activities in the research and development of new devices. Three major areas are explored in which thick film technology contributes as a sensor technology, namely: hybrid circuits for signal processing (in combination with either thick-film sensing elements or transducing elements derived from other technologies), creation of architectural structures (eg. multilayer structures, integrated chips with chemical sensing elements, sensor arrays) and transducing elements derived from thick-film pastes. However, the unique properties and chances offered by thick-film technology for sensor manufacture might not be appreciated without emphasis on both scientific and technological features which are either common or distinguished from those of the major alternative technologies, namely silicon, thin films and ceramic. These are therefore also considered, enabling the volume to offer a balanced view of the state-of-the-art in this exciting field.
This book reviews the recent development of fabrication methods and various properties of lotus-type porous metals and their applications. The nucleation and growth mechanism of the directional pores in metals are discussed in comparison with a model experiment of carbon dioxide pores in ice. Three casting techniques are introduced to produce not only metals and alloys but also intermetallic compounds, semiconductors, and ceramics: mold casting, continuous zone melting, and continuous casting. The latter has merits for mass production of lotus metals to control porosity, pore size and pore direction. Furthermore, anisotropic behavior of elastic, mechanical properties, thermal and electrical conductivity, magnetic properties, and biocompatibility are introduced as peculiar features of lotus metals.
This book presents part of the proceedings of the Manufacturing and Materials track of the iM3F 2020 conference held in Malaysia. This collection of articles deliberates on the key challenges and trends related to manufacturing as well as materials engineering and technology in setting the stage for the world in embracing the fourth industrial revolution. It presents recent findings with regards to manufacturing and materials that are pertinent towards the realizations and ultimately the embodiment of Industry 4.0, with contributions from both industry and academia.
This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.
This book covers the basics of nanotechnology and provides a solid understanding of the subject. Starting from a brush-up of the basic quantum mechanics and materials science, the book helps to gradually build up understanding of the various effects of quantum confinement, optical-electronic properties of nanoparticles and major nanomaterials. The book covers the various physical, chemical and hybrid methods of nanomaterial synthesis and nanofabrication as well as advanced characterization techniques. It includes chapters on the various applications of nanoscience and nanotechnology. It is written in a simple form, making it useful for students of physical and material sciences.
This book provides a guide to Static Random Access Memory (SRAM) bitcell design and analysis to meet the nano-regime challenges for CMOS devices and emerging devices, such as Tunnel FETs. Since process variability is an ongoing challenge in large memory arrays, this book highlights the most popular SRAM bitcell topologies (benchmark circuits) that mitigate variability, along with exhaustive analysis. Experimental simulation setups are also included, which cover nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis. Emphasis is placed throughout the book on the various trade-offs for achieving a best SRAM bitcell design.Provides a complete and concise introduction to SRAM bitcell design and analysis; Offers techniques to face nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis;Includes simulation set-ups for extracting different design metrics for CMOS technology and emerging devices;Emphasizes different trade-offs for achieving the best possible SRAM bitcell design.
Wireless sensor networks have recently received a high level of attention due to their wide applications in military and civilian operations. Security for Wireless Sensor Networks discusses fundamental security issues in wireless sensor networks, techniques for the protection of such networks, as well results from recent studies in wireless sensor network security. This volume assists both professionals and students to understand background knowledge in wireless sensor network security and prepare them for producing research in this domain. Security for Wireless Sensor Networks is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science.
This book highlights the proceedings of the International Conference on Atomic, Molecular, Optical and Nano-Physics with Applications (CAMNP 2019), organized by the Department of Applied Physics, Delhi Technological University, New Delhi, India. It presents experimental and theoretical studies of atoms, ions, molecules and nanostructures both at the fundamental level and on the application side using advanced technology. It highlights how modern tools of high-field and ultra-fast physics are no longer merely used to observe nature but can be used to reshape and redirect atoms, molecules, particles or radiation. It brings together leading researchers and professionals on the field to present and discuss the latest finding in the following areas, but not limited to: Atomic and Molecular Structure, Collision Processes, Data Production and Applications Spectroscopy of Solar and Stellar Plasma Intense Field, Short Pulse Laser and Atto-Second Physics Laser Technology, Quantum Optics and applications Bose Einstein condensation Nanomaterials and Nanoscience Nanobiotechnolgy and Nanophotonics Nano and Micro-Electronics Computational Condensed Matter Physics
This book presents experimental as well as simulation methodologies for analysis and development of nanostructures for introducing the desirable effects through modifications in the basic structure of select nanomaterials. The initial chapters in this book focus on exploring the basic aspects of nanomaterials, e.g., distinguishing features, synthesis, processing, characterization, simulation and application dimensions, or nanostructures that enable novel/enhanced properties or functions. The chapters also cover the size-dependent electronic, optical, and magnetic properties of nanomaterials in exposing the specific properties essential for applications in nanophotonics, nanoplasmonics, nanosystems (e.g., biological, medical, chemical, catalytic, energy, and environmental applications), and nanodevices (e.g., electronic, photonic, magnetic, imaging, diagnostic, and sensor applications). This book is a useful resource for students, researchers, and technologists in gathering recent knowledge on novel nanostructures and their use in different application areas.
Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wearmechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processestool making methodsnumerical modeling of processes and process chainsquality assurance and metrology All topics are discussed with respect to the questions relevant to micro metal forming. The description comprises information from actual research and the young history of this technology branch to be used by students, scientists and engineers in industry who already have a background in metal forming and like to expand their knowledge towards miniaturization. tribological behavior: friction between tool and work piece as well as tool wearmechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processestool making methodsnumerical modeling of processes and process chainsquality assurance and metrology All topics are discussed with respect to the questions relevant to micro metal forming. The description comprises information from actual research and the young history of this technology branch to be used by students, scientists and engineers in industry who already have a background in metal forming and like to expand their knowledge towards miniaturization.
This book highlights a comprehensive introduction of graphene and graphene-based two-dimensional nanomaterials, covering topics from their atomic structures, electronic band structures, and fundamental properties to technological applications. The book provides fundamental physics knowledge covering quantum mechanics, the theory of relativity, solid-state physics, and topology geometry necessary to understand electronic band structure of graphene. Other topics including microscopy techniques and preparation methods of graphene are also presented. Adopting an easy-to-read style, the book is a valuable resource for researchers in physics, chemistry, materials science, and engineers who are interested in the field of graphene-based nanomaterials.
This book presents the proceedings of the 4th International Conference of IFToMM ITALY (IFIT), held in Naples, Italy on September 7-9, 2022. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs |
You may like...
Handbook on Synthesis Strategies for…
A.K. Tyagi, Raghumani S. Ningthoujam
Hardcover
R3,060
Discovery Miles 30 600
Recent Advances in Sustainable…
Kanishka Jha, Piyush Gulati, …
Hardcover
R6,914
Discovery Miles 69 140
Low-Complexity Arithmetic Circuit Design…
K. Sridharan, B. Srinivasu, …
Hardcover
R2,789
Discovery Miles 27 890
Engineering of Thermoplastic Elastomer…
Abhijit Bandyopadhyay, Poulomi Dasgupta, …
Hardcover
R4,249
Discovery Miles 42 490
Intelligent Machining of Complex…
Dinghua Zhang, Ming Luo, …
Hardcover
R4,580
Discovery Miles 45 800
Nanomaterials in Biomedical Application…
Alexander D. Pogrebnjak, Maksym Pogorielov, …
Hardcover
R4,258
Discovery Miles 42 580
Graphene and Nanoparticles Hybrid…
Abou El Kacem Qaiss, Rachid Bouhfid, …
Hardcover
R5,876
Discovery Miles 58 760
Immobilization Strategies - Biomedical…
Anuj Tripathi, Jose Savio Melo
Hardcover
R4,312
Discovery Miles 43 120
|