![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
This book presents selected and peer-reviewed proceedings of the International Conference on Thermofluids (KIIT Thermo 2020). It focuses on the latest studies and findings in the areas of fluid dynamics, heat transfer, thermodynamics, and combustion. Some of the topics covered in the book include electronic cooling, HVAC system analysis, inverse heat transfer, combustion, nano-fluids, multiphase flow, high-speed flow, and shock waves. The book includes both experimental and numerical studies along with a few review chapters from experienced researchers, and is expected to lead to new research in this important area. This book is of interest to students, researchers as well as practitioners working in the areas of fluid dynamics, thermodynamics, and combustion.
This well-established text book fills the gap between the general
texts on fluid mechanics and the highly specialised volumes on
hydraulic engineering.
This successful textbook emphasizes the unified nature of all the disciplines of Fluid Mechanics as they emerge from the general principles of continuum mechanics. The different branches of Fluid Mechanics, always originating from simplifying assumptions, are developed according to the basic rule: from the general to the specific. The first part of the book contains a concise but readable introduction into kinematics and the formulation of the laws of mechanics and thermodynamics. The second part consists of the methodical application of these principles to technology. In addition, sections about thin-film flow and flow through porous media are included.
In this concise yet comprehensive book, the author discusses the principles of mass, momentum, and energy transport, and derives balance equations for single-component fluids and multicomponent mixtures based on the direct application of natural laws and principles of thermodynamics. Transport equations over control volumes are formulated with reference to the Reynolds transport equation, thereby circumventing the need for ad-hoc balances for open systems that are best justified in hindsight. Notable features with regard to mass transport include the interpretation of diffusion in mixtures in terms of species parcel motion and separation, the introduction of Fick's and fractional diffusion laws with reference to random molecular excursions, a detailed account of species and mixture kinematics and dynamics, and the discussion of partial stresses, energies, and entropies of individual mixture components. Key features of this book include: * The governing equations are derived from first principles based on the application of natural laws and principles of thermodynamics * Balances over control volumes are derived from rigorous equations governing material parcel property evolution * Fick's law, a fractional diffusion law, and other diffusion laws are discussed with reference to random walks * A detailed account of species and mixture kinematics and dynamics is presented for binary and multicomponent solutions * A tabulated summary of transport equations is presented in differential and integral forms, and an overview of classical thermodynamics is given in an appendix for a self-contained discourse C. Pozrikidis has taught at the University of California and the University of Massachusetts. He is the author of several books on theoretical and computational topics in science and engineering, applied mathematics, scientific computing, and computer science.
This book gathers the proceedings of the Seventh Symposium on Hybrid RANS-LES Methods, which was held on September 17-19 in Berlin, Germany. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, Lattice-Bolzman methods and turbulence-resolving applications and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.
This book advances a new view of phenomena associated with the spray of liquids from a nozzle in a gas. New results of experimental studies and numerical simulation of the hydrodynamics of an emerging two-phase flow and accompanying interphase heat and mass transfer therein are presented. The book is ideal for specialists who develop and use technologies involving the spraying of liquids in a gas, such as burning and pyrolysis of liquid hydrocarbons, granulation and drying of polymers, and dust and gas scrubbing.
The book contains high quality papers presented in conference Recent Advances in Mechanical Infrastructure (ICRAM-2019) held at IITRAM, Ahmedabad, India from 20-21 April, 2019.The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
This volume provides an overview of the recent advances in the field of paper microfluidics, whose innumerable research domains have stimulated considerable efforts to the development of rapid, cost-effective and simplified point-of-care diagnostic systems. The book is divided into three parts viz. theoretical background of paper microfluidics, fabrication techniques for paper-based devices, and broad applications. Each chapter of the book is self-explanatory and focuses on a specific topic and its relation to paper microfluidics and starts with a brief description of the topic's physical background, essential definitions, and a short story of the recent progress in the relevant field. The book also covers the future outlook, remaining challenges, and emerging opportunities. This book shall be a tremendous up-to-date resource for researchers working in the area globally.
The book investigates the role of artificial input delay in approximating unknown system dynamics, referred to as time-delayed control (TDC), and provides novel solutions to current design issues in TDC. Its central focus is on designing adaptive-switching gain-based robust control (ARC) for a class of Euler-Lagrange (EL) systems with minimal or no knowledge of the system dynamics parameters. The newly proposed TDC-based ARC tackles the commonly observed over- and under-estimation issues in switching gain. The consideration of EL systems lends a practical perspective on the proposed methods, and each chapter is supplemented by relevant experimental data. The book offers a unique resource for researchers in the areas of ARC and TDC alike, and covers the state of the art, new algorithms, and future directions.
This book presents selected peer-reviewed papers from the International Conference on Recent Advancements in Air Conditioning and Refrigeration (RAAR) 2019. The focus is on current research in a very topical area of HVAC technology, which has wide-ranging applications. The topics covered include modern air conditioning and refrigeration practices, environment-friendly refrigerants, high-performance components, computer-assisted design, manufacture, operations and data management, energy-efficient buildings, and application of solar energy to heating and air conditioning. This book is useful for researchers and industry professionals working in the field of heating, air conditioning and refrigeration.
This book aims to show how hemodynamic numerical models based on Computational Fluid Dynamics (CFD) can be developed. An approach to fluid mechanics is made from a historical point of view focusing on the Navier-Stokes Equations and a fluid-mechanical description of blood flow. Finally, the techniques most used to visualize cardiac flows and validate numerical models are detailed, paying special attention to Magnetic Resonance Imaging (MRI) in case of an in vivo validation and Particle Image Velocimetry (PIV) for an in vitro validation.
This book consists of selected peer-reviewed papers presented at the NAFEMS India Regional Conference (NIRC 2018). It covers current topics related to advances in computer aided design and manufacturing. The book focuses on the latest developments in engineering modelling and simulation, and its application to various complex engineering systems. Finite element method/finite element analysis, computational fluid dynamics, and additive manufacturing are some of the key topics covered in this book. The book aims to provide a better understanding of contemporary product design and analyses, and hence will be useful for researchers, academicians, and professionals.
This revised and updated second edition is designed for the first course in mechanics of materials in mechanical, civil and aerospace engineering, engineering mechanics, and general engineering curricula. It provides a review of statics, covering the topics needed to begin the study of mechanics of materials including free-body diagrams, equilibrium, trusses, frames, centroids, and distributed loads. It presents the foundations and applications of mechanics of materials with emphasis on visual analysis, using sequences of figures to explain concepts and giving detailed explanations of the proper use of free-body diagrams. The Cauchy tetrahedron argument is included, which allows determination of the normal and shear stresses on an arbitrary plane for a general state of stress. An optional chapter discusses failure and modern fracture theory, including stress intensity factors and crack growth. Thoroughly classroom tested and enhanced by student and instructor feedback, the book adopts a uniform and systematic approach to problem solving through its strategy, solution, and discussion format in examples. Motivating applications from the various engineering fields, as well as end of chapter problems, are presented throughout the book.
This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book's primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.
This book reports on cutting-edge research and technical achievements in the field of hydraulic drives. The chapters, selected from contributions presented at the International Scientific-Technical Conference on Hydraulic and Pneumatic Drives and Controls, NSHP 2020, held on October 21-23, 2020, in Trzebieszowice, Poland, cover a wide range of topics such as theoretical advances in fluid technology, work machines in mining, construction, marine and manufacturing industry, and practical issues relating to the application and operation of hydraulic drives. Further topics include: safety and environmental issues associated with the use of machines with hydraulic drive, and new materials in design of hydraulic components. A special emphasis is given to new solutions for hydraulic components and systems as well as to the identification of phenomena and processes occurring during the operation of hydraulic and pneumatic systems.
This book presents a collection of selected reviews from PLMMP 2018 that address modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The papers focus on state-of-the-art developments in the contemporary physics of liquid matter, and are divided into four parts: (i) water and water systems, (ii) physical-chemical properties of liquid systems, (iii) aggregation in liquid systems, and (iv) biological aspects of liquid systems, irradiation influences on liquid systems. Taken together, they cover the latest developments in the broader field of liquid states, including interdisciplinary problems.
This book reports on recent advances in the rapidly growing field of high-speed water jet technology, discussing research, developments and applications related to cutting, machining, repair of structures and buildings, cleaning, removal of coatings and layers, mining, and abrasive materials. It also explores special applications of high-pressure techniques, as well as important environmental aspects and solutions for technology transfer. Thanks to the balance of theory and practical findings, the book offers a timely snapshot for researchers and industrial communities alike, and a platform to facilitate communication and collaboration between the two groups.
This book introduces readers to the fundamentals of simulating and analyzing built and natural environments using the Computational Fluid Dynamics (CFD) method. CFD offers a powerful tool for dealing with various scientific and engineering problems and is widely used in diverse industries. This book focuses on the most important aspects of applying CFD to the study of urban, buildings, and indoor and outdoor environments. Following the logical procedure used to prepare a CFD simulation, the book covers e.g. the governing equations, boundary conditions, numerical methods, modeling of different fluid flows, and various turbulence models. Furthermore, it demonstrates how CFD can be applied to solve a range of engineering problems, providing detailed hands-on exercises on air and water flow, heat transfer, and pollution dispersion problems that typically arise in the study of buildings and environments. The book also includes practical guidance on analyzing and reporting CFD results, as well as writing CFD reports/papers.
This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.
This book presents the proceedings of IBEREO 2019. This conference addresses the most recent trends in rheology with a special emphasis on both basic science and industrial applications. Papers presented cover different perspectives, like experimental, theoretical and numerical. Topics include Microfluidics and microrheology, Food, Cosmetics and Pharmaceutical Products; Suspensions and Colloids; Rheometry and Experimental Methods; and Polymers and Biopolymers.
This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.
This book presents a wealth of images of shock wave phenomena, gathered by the author over the past 40 years. Shadowgrams and interferograms of basic shock-dynamic topics such as reflection, diffraction, refraction, and focusing of shock waves in gases and liquids are sequentially displayed. Though the images themselves are self-explanatory, brief explanations of the experimental conditions are included, so as to facilitate analysis and numerical reproduction of the image data. In addition, the book presents interferometric observations of underwater shock wave/bubble interactions, and highlights the multifaceted applications of shock wave phenomena to medicine and industry. Given its scope, the book offers a unique resource for students and researchers who are interested in shock wave phenomena. However, the content has also been specifically prepared for the benefit of readers who are interested in gas dynamics and medical applications of shock waves, and are looking for reliable experimental images. |
You may like...
Integrated Design and Manufacturing in…
Patrick Chedmail, J.-C. Bocquet, …
Hardcover
R5,451
Discovery Miles 54 510
Power Recovery from Low Grade Heat by…
Ian Smith, Nikola Stosic, …
Hardcover
R3,515
Discovery Miles 35 150
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
Advances in Mechanics of Materials and…
Holm Altenbach, Frank Jablonski, …
Hardcover
R2,766
Discovery Miles 27 660
Multicriteria Optimization and…
R.B. Statnikov, J. B. Matusov
Hardcover
R2,790
Discovery Miles 27 900
Microactuators and Micromechanisms…
Erwin Christian Lovasz, Gondi Kondaiah Ananthasuresh, …
Hardcover
R2,674
Discovery Miles 26 740
|