![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
This book contains a collection of the main contributions from the third edition of the NICFD conference, organized by the Special Interest Group on Non-Ideal Compressible Fluid Dynamics (SIG-49). It provides insight on the latest research findings in the field of NICFD that are relevant to a number of engineering applications related to the conversion of renewable and waste energy sources, like organic Rankine cycles, supercritical CO2 cycle power plants, combustors operating with supercritical fluids, and heat pumps. The various chapters of the book document research encompassing theoretical, computational, and experimental aspects of the gas dynamics of non-ideal reactive and non-reactive flows and their impact for the design of internal flow components (turbomachinery, heat exchangers, combustors). Since the accurate calculation of fluid thermo-physical properties is of great concern in NICFD, all the chapters address this problem by describing state-of-the-art models for the characterization of the properties of pure fluids and mixtures.
This book introduces the concept of unsteady aerodynamics and its underlying principles. The author provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references. This 3rd edition includes a new chapter about unsteady applications related to the thrust optimization, aerodynamic stability and trim because there has been much progress in unsteady applications of the flapping wing technology. In addition, further material is presented in Appendix for evaluating the stability derivatives so that no derivation of equations is left incomplete but not overdone in the text.
This book presents selected peer-reviewed papers presented at the International Conference on Innovative Technologies in Mechanical Engineering (ITME) 2019. The book discusses a wide range of topics in mechanical engineering such as mechanical systems, materials engineering, micro-machining, renewable energy, systems engineering, thermal engineering, additive manufacturing, automotive technologies, rapid prototyping, computer aided design and manufacturing. This book, in addition to assisting students and researchers working in various areas of mechanical engineering, can also be useful to researchers and professionals working in various allied and interdisciplinary fields.
This book provides an elementary introduction to one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner, with artificial viscosity introduced into the numerical calculations in order to deal with shocks. This treatment of the subject is focused on the finite-difference approach to solve the coupled differential equations of fluid flow and presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This expanded second edition features substantial new material on sound wave parameters, Riemann's method for numerical integration of the equations of motion, approximate analytical expressions for weak shock waves, short duration piston motion, numerical results for shock wave interactions, and new appendices on the piston withdrawal problem and numerical results for a closed shock tube. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.
The book aims to provide a comprehensive understanding of the most recent developments in finite volume methods. Its focus is on the development and analysis of these methods for the two- and three-dimensional Navier-Stokes equations, supported by extensive numerical results. It covers the most used lower-order finite element pairs, with well-posedness and optimal analysis for these finite volume methods.The authors have attempted to make this book self-contained by offering complete proofs and theoretical results. While most of the material presented has been taught by the authors in a number of institutions over the past several years, they also include several updated theoretical results for the finite volume methods for the incompressible Navier-Stokes equations. This book is primarily developed to address research needs for students and academic and industrial researchers. It is particularly valuable as a research reference in the fields of engineering, mathematics, physics, and computer sciences.
This book disseminates information on paper-based diagnostics devices and describes novel paper materials, fabrication techniques, and Basic Paper-based microfluidics/electronics theory. The section on sample preparation, paper-based electronics/sensors for developing paper-based point-of-care (POC) systems also contains detailed descriptions. In the application sections this book covers sensing technique for DNA/RNA, bacteria/virus and integration of lateral flow assay. The book provides deep understanding and knowledge of paper-based diagnostic device development in terms of concept, materials, fabrication and applications.
This book provides an overview of advanced prediction and verification technologies for aerodynamics and aerothermodynamics and assesses a number of critical issues in advanced hypersonic vehicle design. Focusing on state-of-the-art theories and promising technologies for engineering applications, it also presents a range of representative practical test cases. Given its scope, the book offers a valuable asset for researchers who are interested in thermodynamics, aircraft design, wind tunnel testing, fluid dynamics and aerothermodynamics research methods, introducing them to inspiring new research topics.
This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains MATLAB codes, and C programming language based User-Defined Function (UDF) codes which can be compiled in the ANSYS-FLUENT environment. The computer codes help to understand and use efficiently a new concept which can also be implemented in any other software packages. The simulation results are compared to classical analytical solutions and experimental data taken from the literature. A particular attention is paid to how to obtain accurate results within a reasonable computational time for wide range of benchmark problems. The provided examples and programming techniques help graduate and postgraduate students, engineers and researchers to further develop their technical skills and knowledge.
This book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance by reducing drag, increasing lift or thrust and reducing noise under critical conditions that may result in massive separation, strong vortex dynamics, amplification of harmful instabilities (flutter, buffet), and flow -induced vibrations. Theory together with large-scale simulations and experiments have revealed new features of turbulent flow in the boundary layer over bodies and in thin shear layers immediately downstream of separation. New insights into turbulent flow interacting with actively deformable structures, leading to new ways of adapting and controlling the body shape and vibrations to respond to these critical conditions, are investigated. The book covers new features of turbulent flows in boundary layers over wings and in shear layers immediately downstream: studies of natural and artificially generated fluctuations; reduction of noise and drag; and electromechanical conversion topics. Smart actuators as well as how smart designs lead to considerable benefits compared with conventional methods are also extensively discussed. Based on contributions presented at the IUTAM Symposium "Critical Flow Dynamics involving Moving/Deformable Structures with Design applications", held in June 18-22, 2018, in Santorini, Greece, the book provides readers with extensive information about current theories, methods and challenges in flow and turbulence control, and practical knowledge about how to use this information together with smart and bio-inspired design tools to improve aerodynamic and hydrodynamic design and safety.
This book commemorates the 60th birthday of Dr. Wim van Horssen, a specialist in nonlinear dynamic and wave processes in solids, fluids and structures. In honor of Dr. Horssen's contributions to the field, it presents papers discussing topics such as the current problems of the theory of nonlinear dynamic processes in continua and structures; applications, including discrete and continuous dynamic models of structures and media; and problems of asymptotic approaches.
This book consists of peer-reviewed proceedings from the International Conference on Innovations in Mechanical Engineering (ICIME 2020). The contents cover latest research in all major areas of mechanical engineering, and are broadly divided into five parts: (i) thermal engineering, (ii) design and optimization, (iii) production and industrial engineering, (iv) materials science and metallurgy, and (v) multidisciplinary topics. Different aspects of designing, modeling, manufacturing, optimizing, and processing are discussed in the context of emerging applications. Given the range of topics covered, this book can be useful for students, researchers as well as professionals.
This open access book presents the findings of Collaborative Research Center Transregio 40 (TRR40), initiated in July 2008 and funded by the German Research Foundation (DFG). Gathering innovative design concepts for thrust chambers and nozzles, as well as cutting-edge methods of aft-body flow control and propulsion-component cooling, it brings together fundamental research undertaken at universities, testing carried out at the German Aerospace Center (DLR) and industrial developments from the ArianeGroup. With a particular focus on heat transfer analyses and novel cooling concepts for thermally highly loaded structures, the book highlights the aft-body flow of the space transportation system and its interaction with the nozzle flow, which are especially critical during the early phase of atmospheric ascent. Moreover, it describes virtual demonstrators for combustion chambers and nozzles, and discusses their industrial applicability. As such, it is a timely resource for researchers, graduate students and practitioners.
This book reports on the latest numerical and experimental findings in the field of high-lift technologies. It covers interdisciplinary research subjects relating to scientific computing, aerodynamics, aeroacoustics, material sciences, aircraft structures, and flight mechanics. The respective chapters are based on papers presented at the Final Symposium of the Collaborative Research Center (CRC) 880, which was held on December 17-18, 2019 in Braunschweig, Germany. The conference and the research presented here were partly supported by the CRC 880 on "Fundamentals of High Lift for Future Civil Aircraft," funded by the DFG (German Research Foundation). The papers offer timely insights into high-lift technologies for short take-off and landing aircraft, with a special focus on aeroacoustics, efficient high-lift, flight dynamics, and aircraft design.
This book consists of selected and peer-reviewed papers presented at the 13th International Conference on Vibration Problems (ICOVP 2017). The topics covered in this book include different structural vibration problems such as dynamics and stability under normal and seismic loading, and wave propagation. The book also discusses different materials such as composite, piezoelectric, and functionally graded materials for improving the stiffness and damping properties of structures. The contents of this book can be useful for beginners, researchers and professionals interested in structural vibration and other allied fields.
This book presents new data on combustion processes for practical applications, discussing fire safety issues in the development of flame arresters and the use of noble metals in hydrogen recombiners for nuclear power plants. It establishes the basic principles of production of metal nanostructures, namely nanopowders of metals and compact products made of them, with the preservation of the unique properties of nanoproducts.
This book introduces novel methods for leak and blockage detection in pipelines. The leak happens as a result of ageing pipelines or extreme pressure forced by operational error or valve rapid variation. Many factors influence blockage formation in pipes like wax deposition that leads to the formation and eventual growth of solid layers and deposition of suspended solid particles in the fluids. In this book, initially, different categories of leak detection are overviewed. Afterwards, the observability and controllability of pipeline systems are analysed. Control variables can be usually presented by pressure and flow rates at the start and end points of the pipe. Different cases are considered based on the selection of control variables to model the system. Several theorems are presented to test the observability and controllability of the system. In this book, the leakage flow in the pipelines is studied numerically to find the relationship between leakage flow and pressure difference. Removing leakage completely is almost impossible; hence, the development of a formal systematic leakage control policy is the most reliable approach to reducing leakage rates.
This book gathers the peer-reviewed proceedings of the 14th International Symposium, PRADS 2019, held in Yokohama, Japan, in September 2019. It brings together naval architects, engineers, academic researchers and professionals who are involved in ships and other floating structures to share the latest research advances in the field. The contents cover a broad range of topics, including design synthesis for ships and floating systems, production, hydrodynamics, and structures and materials. Reflecting the latest advances, the book will be of interest to researchers and practitioners alike.
The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.
This textbook offers a unique introduction to hydraulics and fluid mechanics through more than 100 exercises, with guided solutions, which students will find valuable in preparation for their preliminary or qualifying exams and for testing their grasp of the subject. In some exercises two different solution methods are proposed, to highlight the fact that the level of complexity of the calculations is often linked to the choice of method, though in most cases only the simplest method is presented. The exercises are organized by subject, covering forces on planes and curved surfaces; floating bodies; exercises that require the application of linear and angular momentum balancing in inertial and non-inertial references; pipeline systems, with particular applications to industrial plants; hydraulic systems with machines (pumps and turbines); transient phenomena in pipelines; and uniform and gradually varied flows in open channels. The book also features appendices that contain selected data and formulas of practical interest. Instructors of courses that address one or all of the above topics will find the exercises of great help in preparing their courses, while researchers will find the book useful as an accessible summary of the topics covered.
This thesis is concerned with flows through cascades, i.e. periodic arrays of obstacles. Such geometries are relevant to a range of physical scenarios, chiefly the aerodynamics and aeroacoustics of turbomachinery flows. Despite the fact that turbomachinery is of paramount importance to a number of industries, many of the underlying mechanisms in cascade flows remain opaque. In order to clarify the function of different physical parameters, the author considers six separate problems. For example, he explores the significance of realistic blade geometries in predicting turbomachinery performance, and the possibility that porous blades can achieve noise reductions. In order to solve these challenging problems, the author deploys and indeed develops techniques from across the spectrum of complex analysis: the Wiener-Hopf method, Riemann-Hilbert problems, and the Schottky-Klein prime function all feature prominently. These sophisticated tools are then used to elucidate the underlying mathematical and physical structures present in cascade flows. The ensuing solutions greatly extend previous works and offer new avenues for future research. The results are not of simply academic value but are also useful for aircraft designers seeking to balance aeroacoustic and aerodynamic effects.
This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.
This book gathers the best articles presented by researchers and industrial experts at the International Conference on "Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2020)". The papers discuss new design concepts, and analysis and manufacturing technologies, with a focus on achieving improved performance by downsizing; improving the strength-to-weight ratio, fuel efficiency and operational capability at room and elevated temperatures; reducing wear and tear; addressing NVH aspects, while balancing the challenges of Euro VI/Bharat Stage VI emission norms, greenhouse effects and recyclable materials. Presenting innovative methods, this book is a valuable reference resource for professionals at educational and research organizations, as well as in industry, encouraging them to pursue challenging projects of mutual interest.
This book comprises select peer-reviewed papers from the International Conference on Emerging Trends in Electromechanical Technologies & Management (TEMT) 2019. The focus is on current research in interdisciplinary areas of mechanical, electrical, electronics and information technologies, and their management from design to market. The book covers a wide range of topics such as computer integrated manufacturing, additive manufacturing, materials science and engineering, simulation and modelling, finite element analysis, operations and supply chain management, decision sciences, business analytics, project management, and sustainable freight transportation. The book will be of interest to researchers and practitioners of various disciplines, in particular mechanical and industrial engineering.
This book discusses various aspects of percolation mechanics. It starts with the driving forces and driving modes and then examines in detail the steady state percolation of single-phase incompressible fluids, percolation law of natural gas and percolation of non-Newtonian fluids. Progressing from simple to complex concepts, it also analyzes Darcy's law, providing a basis for the study of reservoir engineering, oil recovery engineering and reservoir numerical simulation. It serves as a textbook for undergraduate students majoring in petroleum engineering, petroleum geology and groundwater engineering, and offers a valuable reference guide for graduate students, researchers and technical engineers engaged in oil and gas exploration and development.
This proceedings book includes a selection of refereed papers presented at the International Conference on Modern Mechanics and Applications (ICOMMA) 2020, which took place in Ho Chi Minh City, Vietnam, on December 2-4, 2020. The contributions highlight recent trends and applications in modern mechanics. Subjects covered include biological systems; damage, fracture, and failure; flow problems; multiscale multi-physics problems; composites and hybrid structures; optimization and inverse problems; lightweight structures; mechatronics; dynamics; numerical methods and intelligent computing; additive manufacturing; natural hazards modeling. The book is intended for academics, including graduate students and experienced researchers interested in recent trends in modern mechanics and application. |
You may like...
Operator Algebras and Applications - The…
Toke M. Carlsen, Nadia S. Larsen, …
Hardcover
R6,940
Discovery Miles 69 400
Factorization of Boundary Value Problems…
Jacques Henry, A M Ramos
Hardcover
Thin Film Materials for Large Area…
B. Equer, B. Drevillon, …
Hardcover
R3,776
Discovery Miles 37 760
|