![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
Das Buch stellt spezielle Kenntnisse und Daten aus der Praxis zu Turboverdichtern in Flugtriebwerken zusammen. Damit enthalt es das notwendige Wissen fur die praktische technische Entwicklung, Auslegung und Konstruktion. Der Autor erlautert die Entwicklung der Auslegungs- und Betriebsparameter, die gegenseitigen Abhangigkeiten und die geeigneten Kombinationen der Auslegungsparameter. Grundlage dafur sind umfassende Daten aus der industriellen Entwicklung. Alle Arten von Verdichterkomponenten und Verdichterbauweisen werden berucksichtigt."
Focusing on topics of interest to the practicing engineer, this book codifies the many relevant books, papers, and reports written on this hybrid subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring readers quickly up to date on current methods and gain the ability to set up and solve the various types of problems they will encounter.
In 1999, the International Centre for Mechanical Sciences celebrates t hirty years of activity. For this celebration CISM has organized a ser ies of courses and meetings on environmental problems, one of the lead ing subjects today of theoretical and applied research all over the wo rld. The results obtained directly influence our daily life, particula rly in applications for protection from pollution and natural hazards. The most significant of the events was the Conference on Environment al Applications of Mechanics and Computer Science, where prominent sci entists in the field present significant examples of the scientific ap proach to large scale phenomena involved in environmental problems.
Thermal convection is often encountered by scientists and engineers while designing or analyzing flows involving exchange of energy. Fundamentals of Convective Heat Transfer is a unified text that captures the physical insight into convective heat transfer and thorough, analytical, and numerical treatments. It also focuses on the latest developments in the theory of convective energy and mass transport. Aimed at graduates, senior undergraduates, and engineers involved in research and development activities, the book provides new material on boiling, including nuances of physical processes. In all the derivations, step-by-step and systematic approaches have been followed.
Computational Fluid Dynamics Applied to Waste-to-Energy Processes: A Hands-On Approach provides the key knowledge needed to perform CFD simulations using powerful commercial software tools. The book focuses on fluid mechanics, heat transfer and chemical reactions. To do so, the fundamentals of CFD are presented, with the entire workflow broken into manageable pieces that detail geometry preparation, meshing, problem setting, model implementation and post-processing actions. Pathways for process optimization using CFD integrated with Design of Experiments are also explored. The book's combined approach of theory, application and hands-on practice allows engineering graduate students, advanced undergraduates and industry practitioners to develop their own simulations.
This book presents a broad overview of the issues related to the flow of particles in suspensions. Chapters cover the newest research in advanced theoretical approaches and recent experimental techniques. Topics include macroscopic transport properties, the mechanics of capsules and cells, hydrodynamic diffusion and phase separation.
Computational techniques have become indispensable tools in solving complex problems in transport phenomena. This book, first published in 1997, provides a clear, user-oriented introduction to the subject. Each self-contained chapter includes a detailed worked example and a discussion of the problem system equations. Also included are the numerical methods used; computer code for the solution of the problem system equations; discussion of the numerical solution with emphasis on physical interpretation; and when appropriate, a comparison of the numerical solution with an analytical solution or a discussion of how the numerical solution goes beyond what can be done analytically, especially for nonlinear problems. Intended for students and a broad range of scientists and engineers, the book includes computer code written in transportable Fortran so that readers can produce the numerical solutions and then extend them to other cases. The programs are also available on the author's web site at http://www.lehigh.edu/~wes1/wes1.html.
Manufacturing processes have existed, in some form, since the dawn of civilization. Modelling and numerical simulation of mechanics of such processes, however, are of fairly recent vintage; made possible, mainly by improved understanding of the fundamental mechanics and physics of these processes as well as by the availability of ever more powerful computers. Our capabilities of designing manufacturing processes, however, significantly lag behind our abilities in simulating such processes. In fact, research in the area of design of manufacturing processes is barely a decade old. Analysis of manufacturing processes, and its integration into the design cycle of these processes, are the dual themes of this book. The boundary element method (BEM) is the computational method of choice. This versatile and powerful method has enjoyed extensive development during the last two decades and has been applied to virtually all areas of engieering mechanics (both linear and nonlinear) as well as in other areas. The BEM infra-structure is presented in Chapters 2, 3, and 4. Chapters 2 and 3, respectively provide reviews of the fundamentals of nonlinear and thermal problems. Material and geometric nonlinearities are ubiquitous in manufacturing processes such as forming and machining while thermal issues play significant roles in casting and machining processes. Chapter 4 discusses design sensitivity analysis, and provides an avenue for utilizing insights gained from analysis toward design synthesis of manufacturing processes. Chapters 5 through 9 are devoted to detailed discussions of a broad range of manufacturing processes - forming, solidification, machining, and ceramic grinding. The unique features of this book are its emphasis on numerical simulation as well as on design of manufacturing processes, and the use of the boundary element method as the computational method of choice.
This well-known 2-volume textbook provides senior undergraduate and postgraduate engineers, scientists and applied mathematicians with the specific techniques, and the framework to develop skills in using the techniques in the various branches of computational fluid dynamics. In Volume 2 specific techniques are described for inviscid, compressible, boundary layer and separating flow. Grid generation and the use of generalized coordinates for complex geometric domains are dealt with in detail. The most modern methods (including many computer programs) are described in connection with real problems in the field of fluid dynamics. For the the second edition the author also compiled a separately available manual of solutions to the many exercises to be found in the main text.
Within the DFG -Schwerpunktprogramm "Stromungssimulation mit Hochleistungsrechnern" and within the activities of the French-German cooperation of CNRS and DFG a DFG symposium on "Computational Fluid Dynamics (CFD) on Parallel Systems" was organized at the Institut fur Aerodynamik and Gasdynamik of the Stuttgart University, 9-10 December 1993. This symposium was attended by 37 scientists. The scientific program consisted of 18 papers that considered finite element, finite volume and a two step Taylor Galerkin algorithm for the numerical solution of the Euler and Navier-Stokes equations on massively parallel computers with MIMD and SIMD architecture and on work station clusters. Incompressible and compressible, steady and unsteady flows were considered including turbu lent combustion with complex chemistry. Structured and unstructured grids were used. High numerical efficiency was demonstrated by multiplicative, additive and multigrid methods. Shared memory, virtual shared memory and distributed memory systems were investigated, in some cases based on an automatic grid partitioning technique. Various methods for domain decomposition were investigated. The key point of these methods is the resolution of the inter face problem because the matrix involved can be block dense. Multilevel decomposition can be very efficient using multifrontal algorithm. The numerical methods include explicit and implicit schemes. In the latter case the system of equations is often solved by a Gauss -Seidel line re laxation technique."
The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.
This book presents the contents of a CISM Course on waves and instabilities in plasmas. For beginners and for advanced scientists a review is given on the state of knowledge in the field. Customers can obtain a broad survey.
Das Buch fuhrt in die CAE-Methoden ein und behandelt die spezifischen Fragestellungen von CAE-Methoden in der Fahrzeugtechnik. Zunachst werden Grundlagen zur Modellbildung und zu Diskretisierungsverfahren fur partielle Differentialgleichungen dargestellt. Die anschliessenden Kapitel beschreiben die Inhalte Temperaturausgleich, Mehrkorpersimulationen sowie Statik und Dynamik elastischer Korper. Es folgt ein Kapitel uber Finite-Elemente. Anschliessend werden die fahrzeugspezifischen Themen Crash- und Insassensimulation, Akustik, Statik und Dynamik von Rohkarosserien, Mehrkorpersimulationen und Lebensdauer, Stromungssimulation und Reifen-Fahrbahn-Wechselwirkungen behandelt. Erganzt werden die Inhalte durch Kapitel uber nichtlineare Phanomene und Optimierungsverfahren."
This book provides a self-contained presentation of optical methods used to measure the structure and dynamics of complex fluids subject to the influence of external fields. Such fields--hydrodynamic, electric, and magnetic--are commonly encountered in both academic and industrial research, and can produce profound changes in the microscale properties of liquids comprised of polymers, colloids, liquid crystals, or surfactants. Starting with the basic Maxwell field equations, this book discusses the polarization properties of light, including Jones and Mueller calculus, and then covers the transmission, reflection, and scattering of light in anisotropic materials. Spectroscopic interactions with oriented systems such as absorptive dichroism, small wide angle light scattering, and Raman scattering are discussed. Applications of these methods to a wide range of problems in complex fluid dynamics and structure are presented, along with selected case studies chosen to elucidate the range of techniques and materials that can be studied. As the only book of its kind to present a self-contained description of optical methods used for the full range of complex fluids, this work will be special interest to a wide range of readers, including chemical engineers, physical chemists, physicists, polymer and colloid scientists, along with graduate and post-graduate researchers.
This volume offers a wide range of theoretical, numerical and experimental research papers on fluid dynamics. The major fields of research - fundamentals of fluid mechanics as well as their applications - are treated: - stability phenomena: convective flow, thermal and hydrodynamic systems - transition, turbulence and separation: boundary-layer, turbulent combustion, rarefied gasdynamics, near wall and off wall flow fields, energy dissipation - transonic flow: homogeneous condensation, shock-waves, effects at Mach number unity - hypersonic flow: flow over spheres, aerothermodynamics, relaxation - fluid machinery: axial fans, compressor cascades, fluid couplings - computational fluid dynamics: passive shock control, zonal computation, cylinderflow, flow over wings - miscellaneous problems.
Mechanics of Continua and Wave Dynamics is a textbook for a course on the mechanics of solids and fluids with the emphasis on wave theory. The material is presented with simplicity and clarity but also with mathematical rigor. Many wave phenomena, especially those of geophysical nature (different types of waves in the ocean, seismic waves in the earth crust, wave propagation in the atmosphere, etc.), are considered. Each subject is introduced with simple physical concepts using numerical examples and models. The treatment then goes into depth and complicated aspects are illustrated by appropriate generalizations. Numerous exercises with solutions will help students to comprehend and assimilate the ideas.
This book contains original papers presented at the Fourth International Conference on Hyperbolic Problems which was held on April 3-8, 1992 in Taormina (Sicily), Italy. The aim of the Conferences in this cycle is to bring together scientists with interest in theo retical, applied and computational aspects of hyperbolic partial differential equations. The contributions, well balanced among these three aspects, deal with: mathematical theory of wave propagation, kinetic theory, existence, uniqueness and stabil ity of solutions, mathematical modeling of physical phenomena, stability and convergence of numerical schemes, multidimensional computational applications, etc. The papers are printed in the authors' alphabetic order following the idea both of mixing together topics of interest to different areas and of considering either theoretical results connected with applied problems or new applications with an essential mathemat ical approach. The Proceedings from the previous Conferences held in St. Etienne (1986), Aachen (1988) and Uppsala (1990) appeared respectively as: Lecture Notes in Mathematics, 1270, P. Carasso, P. A. Raviart & D. Serre (Eds.), Springer-Verlag (1987) Notes on Numerical Fluid Mechanics, 24, J. Ballmann & R. Jeltsch (Eds.), Vieweg (1989 ) Third International Conference on Hyperbolic Problems, B. Engquist & B. Gustafs son (Eds.), Vol. I, II, Studentlitteratur, Uppsala University (1991). The organizers and the editors of the Conference would like to thank the Scientific Committee for the generous support, for suggesting the invited lectures, and for selecting the contributed papers."
Introduction to Fluid Mechanics, Sixth Edition, is intended to be used in a first course in Fluid Mechanics, taken by a range of engineering majors. The text begins with dimensions, units, and fluid properties, and continues with derivations of key equations used in the control-volume approach. Step-by-step examples focus on everyday situations, and applications. These include flow with friction through pipes and tubes, flow past various two and three dimensional objects, open channel flow, compressible flow, turbomachinery and experimental methods. Design projects give readers a sense of what they will encounter in industry. A solutions manual and figure slides are available for instructors.
Currently much research is being undertaken, within a wide range of scientific and engineering disciplines, on macroscopic phenomena associated with liquid boundaries. This volume contains articles which address the modelling of such phenomena from a variety of viewpoints. These works serve to acquaint the reader with the range of macroscopic behaviour which can occur at liquid boundaries, to indicate various aproaches to relevant continuum descriptions and the difficulties of modelling non-equilibrium situations, to demonstrate applications of continuum models to the solution of practical problems, and to convey due appreciation of experimental aspects of the subject. The specific topics addressed are phenomenological approaches to fluid-flute interfaces and the physical interpretation of associated concepts and quantities, non-equilibrium thermodynamics and statistical physics of liquid-vapour interfaces, the physics of ice-water phase-change surfaces, and the prediction of static and dynamic contact angles, wetting and spreading.
Das Buch behandelt ausfuhrlich das Verhalten der thermischen Turbomaschinen unter geanderten Betriebsbedingungen und darauf aufbauend ihre Regelungseigenschaften. Weiter werden die spezifischen Festigkeitsprobleme der Turbomaschinen dargestellt. Diesen Kapiteln ist ein allgemeines Kapitel uber die Grundlagen der Festigkeitsrechnungen vorausgeschickt, das zwar diejenigen Aspekte besonders hervorhebt, die im Turbomaschinenbau vor allem wichtig sind, aber auch fur verwandte Gebiete bedeutsam ist, da eine geraffte Darstellung dieser Art bis heute fehlt. Der Bestimmung der Temperaturverteilung in den massgebenden Konstruktionsteilen (insbes. in der gekuhlten Gasturbine) ist ein weiteres Kapitel gewidmet. Den Abschluss bilden die Ausfuhrungen uber die Schaufelschwingungen und die lauftechnischen Probleme der Rotoren."
Das Werk gibt eine umfassende Darstellung der theoretischen Grundlagen zur Berechnung und Auslegung von Dampfturbinen, Gasturbinen und Turbokompressoren. Der erste Band behandelt die thermodynamische Prozessfuhrung von Dampf- und Gasturbinenanlagen und die thermodynamisch-stroemungstechnische Berechnung der Turbomaschinen selbst. Um zu einem vertieften Verstandnis zu fuhren, wird die Theorie stets aus den Grundwissenschaften heraus entwickelt, weshalb auch ein kurzer Abriss der thermodynamischen und stroemungstechnischen Grundlagen an den Anfang gestellt ist.
Gesamtwerk: In diesem Werk der beiden bedeutenden Aerodynamiker wird das gesamte Gebiet der Flugzeugaerodynamik von den Grundlagen bis zu den Entwicklungen der 60er Jahre des 20. Jahrhunderts in klarer, ingenieursgemasser Form dargestellt. Das Hauptgewicht liegt dabei auf den physikalisch und technisch wichtigen Sachverhalten. Die erlauterten Berechnungsverfahren werden durch zahlreiche Beispielrechnungen und Abbildungen veranschaulicht sowie durch Vergleich mit experimentellen Werten uberpruft. Zweiter Band: Im zweiten Band wird die Theorie des Tragflugels endlicher Spannweite bei inkompressibler Stroemung, die Theorie des Tragflugels bei kompressibler Stroemung, die Aerodynamik des Rumpfes, der Flugel-Rumpf-Anordnung, der Leitwerke sowie der Ruder und Klappen behandelt.
1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal waters, as well as the design of cooling ponds and solar ponds, requires an ade quate quantitative description of turbulent flows. When the diffusion of some tracer (be it active, such as temperature or salinity, or passive, such as dissolved oxygen) is of relevance to a specific application, the proper determination of the effects of turbulent transport processes has paramount importance. Thus, for instance, the proper understanding of lake and reservoir dynamics requires, as a first step, the ability to simulate turbulent flows. Applications in other areas of geophysical research, such as meteorology and oceanography are easily identified and large in number. It should be stressed that, in this context, the analyst seeks predictive ability to a certain extent. Accordingly, the need for simulation models that closely resemble the natural processes to be repre sented has recently become more evident. Since the late 1960s considerable effort has been devoted to the development of models for the simulation of complex turbulent flows. This has resulted in the establishment of two approaches which have been, or 2 have the potential for being, applied to problems of engineering and geophysical interest.
This is the most up-to-date, comprehensive, and practical book on the subject available, explaining the concepts and related practical implementations of all major hot-wire anemometry applications. It introduces the logical framework for a computer-based HWA system and identifies the individual steps in the complete experimental procedure, ranging from probe selection to the presentation of analysed data. This major work will be invaluable as a reference for students, engineers, and researchers engaged in the field. |
You may like...
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,275
Discovery Miles 72 750
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R3,925
Discovery Miles 39 250
|