![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
This volume contains contributions to the First Kazakh-German Advanced Research Workshop on Computational Science and High Performance Computing presented in September 2005 at Almaty, Kazakhstan. The workshop was organized by the High Performance Computing Center Stuttgart (Stuttgart, Germany), al-Farabi Kazakh National University (Almaty, Kazakhstan) and the Institute of Computational Technologies SB RAS (Novosibirsk, Russia) in the framework of activities of the German-Russian Center for Computational Technologies and High Performance
Capillary Forces in Microassembly discusses the use of capillary forces as a gripping principle in microscale assembly. Clearly written and well-organized, this text brings together physical concepts at the microscale with practical applications in micromanipulation. Throughout this work, the reader will find a review of the existing gripping principles, elements to model capillary forces as well as descriptions of the simulation and experimental test bench developed to study the design parameters. Using well-known concepts from surface science (such as surface tension, capillary effects, wettability, and contact angles) as inputs to mechanical models, the amount of effort required to handle micro-components is then predicted. Researchers and engineers involved in micromanipulation and precision assembly will find this a highly useful reference for microassembly system design and analysis.
Elementary vortices those tubular swirling vortical structures with concentrated vorticity commonly observed in various kinds of turbulent flows play key roles in turbulence dynamics (e.g. enhancement of mixing, diffusion and resistance) and characterize turbulence statistics (e.g. intermittency). Because of their dynamical importance, manipulation of elementary vortices is expected to be effective and useful in turbulence control as well as in construction of turbulence modeling. The most advanced research works on elementary vortices and related problems were presented and discussed at the IUTAM Symposium in Kyoto, Japan, 26-28 October 2004. This book contains 40 contributions presented there, the subjects of which cover vortex dynamics, coherent structures, chaotic advection and mixing, statistical properties of turbulence, rotating and stratified turbulence, instability and transition, dynamics of thin vortices, finite-time singularity, and superfluid turbulence. The book should be useful for readers of graduate and advanced levels in the field of fluid turbulence. "
These proceedings are a continuation of the series of International Conferences in Germany entitled "Mechanics of Unsaturated Soils." The primary objective is to discuss and understand unsaturated soil behaviour such that engineered activities are made better with times in terms of judgment and quality. The proceedings contain recent research by leading experts in Mechanics of Unsaturated Soils.
The nuclear thermal hydraulic is the science providing knowledge about the physical processes occurring during the transferring the fission heat released in structural materials due to nuclear reactions into its environment. Along its way to the environment the thermal energy is organized to provide useful mechanical work or useful heat or both. Chapter 1 contains introductory information about the heat release in the re- tor core, the thermal power and thermal power density in the fuel, structures and moderator, the influence of the thermal power density on the coolant temperature, the spatial distribution of the thermal power density. Finally some measures are introduced for equalizing of the spatial distribution of the thermal power density. Chapter 2 gives the methods for describing of the steady and of the transient temperature fields in the fuel elements. Some information is provided regarding influence of the cladding oxidation, hydrogen diffusion and of the corrosion pr- uct deposition on the temperature fields. Didactically the nuclear thermal hydraulic needs introductions at different level of complexity by introducing step by step the new features after the previous are clearly presented. The followed two Chapters serve this purpose. Chapter 3 describes mathematically the "simple" steady boiling flow in a pipe. The steady mass-, momentum- and energy conservation equations are solved at different level of complexity by removing one after the other simplifying assu- tions. First the idea of mechanical and thermodynamic equilibrium is introduced.
Ideals are simple and able to be easily understood, but never exist in reality. In this book a theory based on the second law of thermodynamics and its applications are described. In thermodynamics there is a concept of an ideal gas which satisfies a mathematical formula PV = RT. This formula can appro- mately be applied to the real gas, so far as the gas has not an especially high pressure and low temperature. In connection with the second law of thermo- namics there is also a concept of reversible and irreversible processes. The reversible process is a phenomenon proceeding at an infinitely low velocity, while the irreversible process is that proceeding with a finite velocity. Such a process with an infinitely slow velocity can really never take place, and all processes observed are always irreversible, therefore, the reversible process is an ideal process, while the irreversible process is a real process. According to the first law of thermodynamics the energy increase dU of the thermodynamic system is a sum of the heat dQ added to the system and work dW done in the system. Practically, however, the mathematical formula of the law is often expressed by the equation , or some similar equations derived from this formula, is applied to many phenomena. Such formulae are, however, th- retically only applicable to phenomena proceeding at an infinitely low velocity, that is, reversible processes or ideal processes.
Stefanescu here attempts to describe solidification theory through the complex mathematical apparatus required for a fundamental treatment of the problem. The mathematics is however restricted to the elements essential to attain a working knowledge in the field. This is in line with the main goal of the book, which is to educate the reader in the fast moving area of computational modeling of solidification of castings. A special effort has been made to introduce the reader to the latest developments in solidification theory including, in this second edition, a new chapter on semi-solid casting.
This book contains lecture notes and invited contributions presented at the NATO Advanced Study Institute and EPS Liquid State Conference on PHYSICOCHEMICAL HYDRODYNAMICS-PCH: INTERFACIAL PHENOMENA that were held July 1-15, 1986, in LA RABIDA (Huelva) SPAIN. Although we are aware of the difficulty in organizing the contents due to the broad and multidisciplinary aspects of PCH-Interfacial Phenomena, we have tried to accomodate papers by topics and have not followed the order in the presentation at the meetings. There is also no distinction between the ASI notes and Conference papers. We have done our best to offer a coverage as complete as possible of the field. However, we had difficulties coming from the fact that some authors were so busy that either did not find time to submit their contribution or did not have time to write a comprehensive paper. We also had to cope with very late arrivals, postdeadline valuable contributions that we felt had to be included here. Our gratitude goes to the NATO Scientific Affairs Division for its economic support and to the EPS Liquid State Committee for its sponsorship. Financial support also came from Asociacion Industrias Quimicas-Huelva (Spain), Caycit-Ministerio De Educacion Y Ciencia (Spain), Canon-Espana (Spain), Citibank-Espana (Spain), CNLS-Los Alamos Nat. Lab. (U. S. A. ), CSIC (Spain), EPS, ERT (Spain), ESA, Fotonica (Spain), IBM-Espana (Spain), Junta De Andalucia (Spain), NATO, NSF (U. S. A. ), ONR-London (U. S. A.
These two volumes contain the proceedings of the workshop on the Institute for Computer Instability and Transition, sponsored by Applications in Science and Engineering (ICASE) and the Langley Research Center (LaRC), during May 15 to June 9, 1989. The work shop coincided with the initiation of a new, focused research pro gram on instability and transition at LaRC. The objectives of the workshop were to (i) expose the academic community to current technologically important issues of instability and transition in shear flows over the entire speed range, (ii) acquaint the academic com munity with the unique combination of theoretical, computational and experimental capabilities at LaRC and foster interaction with these facilities, (iii) review current state-of-the-art and propose fu ture directions for instability and transition research, (iv) accelerate progress in elucidating basic understanding of transition phenomena and in transferring this knowledge into improved design methodolo gies through improved transition modeling, and (v) establish mech anisms for continued interaction. The objectives (i) to (iii) were of course immediately met. It is still premature to assess whether ob jectives (iv) and (v) are achieved. The workshop program consisted of tutorials, research presenta tions, panel discussions, experimental and computational demonstra tions, and collaborative projects.
Combustion systems are confined fields of compressible fluids where exothermic processes of combustion take place, subject to boundary conditions imposed at its borders. The subject of Dynamics of Combustion Systems is presented in three parts: Part 1. Exothermicity considering the thermodynamic effects due to evolution of exothermic energy in a combustion system Chapter 1. Thermodynamic Aspects Part 2. Field exposing the dynamic properties of flow fields where the exothermic energy is deposited Chapter 5. Aerodynamic Aspects Part 3. Explosions revealing the dynamic features of fields and fronts due to rapid deposition of exothermic energy Chapter 9. Blast Wave Theory
Fluid Mechanics, as a scientific discipline in a modern sense, was established between the last third of the 17th century and the first half of the 18th century. This book analyses its genesis from two lines: resistance and discharge. This approach highlights the existence of a remarkable experimental aspect in the aforementioned research lines, together with their link with problems of a practical nature, such as ballistics, hydraulics, fluid-using machines or naval theory.
This volume contains new trends of computational fluid dynamics for the 21st century and consists of papers especially useful to the younger generation of scientists and engineers in this field. Topics include cartesian, gridless and higher-order schemes, and flow-visualization techniques.
This volume contains the proceedings of the CEASlDragNet European Drag Reduction Conference held on 19-21 June 2000 in Potsdam, Germany. This conference, succeeding the First and Second European Forum on Laminar Flow Technology 1992 and 1996 respectively, was initiated by the European Drag Reduction Network (DragNet) and organised by DGLR (Deutsche Gesellschaft fUr Luft- und Raumfahrt - Lilienthal Oberth e. V. ) under the auspices ofCEAS (Confederation of European Aerospace Societies). The development of aerodynamic drag reduction technologies is driven by predictions of remarkable fuel savings, promising substantial improvements not only of aircraft efficiency but also of environmental compatibility. However, considerable efforts on an European scale are needed in order to develop, qualifY and demonstrate the means for their practical realisation. The primary aim of this conference was to provide a comprehensive survey of the current status of research, development and application in all disciplines of aerodynamic drag re- duction including laminar flow technology, adaptive wing concepts, turbulence and se- paration control, induced drag reduction and supersonic flow aspects. Besides aerodynamic topics the Call for Papers addressed also interdisciplinary aspects of design & system inte- gration, structures, materials, manufacturing, operations and maintenance. The Programme Committee (PC), responsible for the scientific preparation of the conference, consisted of CEAS representatives and DragNet board members (see following page).
The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.
This volume is published as the proceedings of the third Russian-German - vanced Research Workshop on Computational Science and High Performance Computing in Novosibirsk, Russia, in July 2007. The contributions of these proceedings were provided and edited by the - thors, chosen after a careful selection and reviewing. The workshop was organized by the High Performance Computing Center Stuttgart(Stuttgart,Germany)andtheInstituteofComputationalTechnologies SBRAS(Novosibirsk,Russia)intheframeworkofactivitiesoftheGerman-Russian CenterforComputationalTechnologiesandHighPerformanceComputing. Thee event is held biannually and has already become a good tradition for German and Russian scientists. The ?rst Workshop took place in September 2003 in Novosibirskand the second Workshopwas hosted by Stuttgart in March 2005. Both workshops gave the possibility of sharing and discussing the latest results and developing further scienti?c contacts in the ?eld of computational science and high performance computing. The topics of the current workshop include software and hardware for high performancecomputation,numericalmodellingingeophysicsandcomputational ?uid dynamics, mathematical modelling of tsunami waves, simulation of fuel cellsandmodern? breopticsdevices,numericalmodellingincryptographypr- lems andaeroacoustics,interval analysis,toolsfor Gridapplications,researchon service-oriented architecture (SOA) and telemedicine technologies. Theparticipationofrepresentativesofmajorresearchorganizationsengagedin the solution of the most complex problems of mathematical modelling, devel- ment of new algorithms,programsandkey elementsof informationtechnologies, elaboration and implementation of software and hardware for high performance computing systems,provideda highlevelof competenceofthe workshop. Among the German participants were the heads and leading specialists of the HighPerformanceComputingCenterStuttgart(HLRS)(UniversityofStuttgart), NECHighPerformanceComputingEuropeGmbH,SectionofAppliedMathem- ics(UniversityofFreiburgi.Br.),InstituteofAerodynamics(RWTHAachen),- gionalComputingCenterErlangen(RRZE(UniversityofErlangen-Nuremberg), Center for High Performance Computing (ZHR) (Dresden University of Technology).
Drag Reduction of Turbulent Flows by Additives is the first treatment of the subject in book form. The treatment is extremely broad, ranging from physicochemical to hydromechanical aspects. The book shows how fibres, polymer molecules or surfactants at very dilute concentrations can reduce the drag of turbulent flow, leading to energy savings. The dilute solutions are considered in terms of the physical chemistry and rheology, and the properties of turbulent flows are presented in sufficient detail to explain the various interaction mechanisms. Audience: Those active in fundamental research on turbulence and those seeking to apply the effects described. Fluid mechanical engineers, rheologists, those interested in energy saving methods, or in any other application in which the flow rate in turbulent flow should be increased.
HYDRODYNAMIC PROPULSION AND ITS OPTIMIZATION ANALYTIC THEORY Hydrodynamic propulsion has been of major interest ever since craft took to the water. In the course of time, many attempts have been made to invent, develop, or to improve hydrodynamic propulsion devices. Remarkable achievements in this field were made essentially by experienced individuals, who were in need of reliable propulsion units such as paddle wheels, sculling devices, screw propellers, and of course, sails. The problem of minimizing the amount of input energy for a prescribed effective output was first investigated seriously at the beginning of this century. In 1919, BETZ presented a paper on air-screw propellers with minimum consumption of energy which could be applied to ship-screw propellers also. Next, attempts were made to optimize hydrodynamic propulsion units. Ensuing investigations concerned the optimization of the hydrodynamic system: ship-propeller. The first simple theory of ship propulsion which was presented considered more or less only thrust augmentation, wake processing and modification of propeller characteristics when operating behind the ships hull. This theory has been little improved meanwhile and is still useful, particularly with regard to practical ship design and for evaluating results of ship model tests. However, this theory is not adequate for optimization procedures necessary for high-technology propulsion, particularly for ship propellers utilizing propulsion improving devices such as tip end plates or tip fins at the propeller blades, spoilers in front of the propeller, asymmetrical stern etc.
The active field of multi-phase flow has undergone fundamental changes in the last decade. Many salient complex interfacial dynamics of such flows are now understood at a basic level with precise mathematical and quantitative characterization. This is quite a departure from the traditional empirical approach. At an IUTAM Symposium at Notre Dame, in 1999, some of the leading researchers in the field gathered to review the progress thus far and to contemplate future directions. Their reports are summarized in this Proceedings. Topics covered include solitary wave dynamics on viscous film flows, sheet formation and drop entrainment in stratified flow, wetting and dewetting dynamics, self-similar drop formation dynamics, waves in bubbly and suspension flow, and bubble dynamics. It is a unique and essential reference for applied mathematicians, physicists, research engineers, and graduate students to keep abreast of the latest theoretical and numerical developments that promise to transform multi-phase flow research.
Speckle photography is an advanced experimental technique used for quantitatve determination of density, velocity and temperature fields in gas, liquid, and plasma flows. This book presents the most important equations for the diffraction theory of speckle formation and the statistical properties of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Speckle photography methods for automatic data acquisition and processing are considered and examples for their use are given.
The Summer School has been dedicated to one of the proponents and ?rst Chairman of the Strategy Board of MACSI-net, the late Jacques Louis Lions (see the dedication by Roland Glowinski). MACSI-net is a European Network of Excellence, where both enterprises and university institutions co-operate to solve challenging problems to their mutual bene?t. In particular the network focuses on strategies to enhance interactions between industry and academia. The aim is to help industry (in particular SMEs) alert academia about industrial needs in terms of advanced mathematical and computational methods and tools. The network is mul- disciplinary oriented, combining the power of applied mathematics, scienti?c computing and engineering, for modeling and simulation. It was set up by a joint e?ort of ECCOMAS and ECMI European associations. Thisparticularevent,occurredduringMarch17-22,2003,wasajointe?ort ofthe TrainingCommittee (chairedby VC)andIndustrialRelationsComm- tee (chairedby JP)to alert both Academia and Industry about the increasing role of Multidisciplinary Methods and Tools for the design of complex pr- uctsinvariousareasofindustrialinterest.Thisincreasingcomplexityisdriven by societal constraints to be satis? ed in a simultaneous and a?ordable way. The mastering of complexity implies the sharing of di?erent tools by di?erent actors which require much higher level of communication between culturally di?erent people. The school o?ered to young researchers the opportunity to be exposed to the presentation of real industrial and societal problems and the relevant innovative methods used; the need of further contributions from mathematics to improve or provide better solutions had also been considered.
This volume contains selected presentations of the "EUROMECH Colloquium 412 on LES of complex transitional and turbulent flows" held at the Munich University of Technology from 4 to 6 October 2000. The articles focus on new developments in the field of large-eddy simulation of complex flows and are related to the topics: modelling and analysis of subgrid scales, numerical issues in LES cartesian grids for complex geometries, curvilinear and non-structured grids for complex geometries. DES and RANS-LES coupling, aircraft wake vortices, combustion and magnetohydrodynamics. Progress has been made not only in understanding and modelling the dynamics of unresolved scales, but also in designing means that prevent the contamination of LES predictions by discretization errors. Progress is reported as well on the use of cartesian and curvilinear coordinates to compute flow in and around complex geometries and in the field of LES with unstructured grids. A chapter is dedicated to the detached-eddy simulation technique and its recent achievements and to the promising technique of coupling RANS and LES solutions in order to push the resolution-based Reynolds number limit of wall-resolving LES to higher values. Complexity due to physical mechanisms links the last two chapters. It is shown that LES constitutes the tool to analyse the physics of aircraft wake vortices during landing and takeoff. Its thorough understanding is a prerequisite for reliable predictions of the distance between consecutive landing airplanes. Subgrid combustion modelling for LES of single and two-phase reacting flows is demonstrated to have the potential to deal with finite-rate kinetics in high Reynolds number flows of full-scale gas turbine engines. Fluctuating magnetic fields are more reliably predicted by LES when tensor-diffusivity rather than gradient-diffusion models are used. An encouraging result in the context of turbulence control by magnetic fields.
The book deals with the theme of incompressible flows of electrically conducting fluids in hydraulic components. The main content of the book is a result of engineering research associated with the design of liquid metal cooling systems for fusion reactors. The book is well suited to serve as a guide for utilising magnetohydrodynamic means in other engineering disciplines such as in material processing, metallurgical engineering and power engineering.
"Systems of Commercial Turbofan Engines" gives the reader information about the operation of the engine systems, its components and the terminology used throughout the industry. The engine systems are explained by the use of examples from today's engines. So the readers, from aircraft mechanics to commercial pilot, become familiar with the current technology in this field and attains a deeper knowledge of the systems of commercial turbofan engines. To understand the operation of gas turbine engines used in aircraft, it is not enough to understand the basic operation of a gas turbine. It is also necessary to understand the operation and the design of its auxiliary systems. This book is an introduction into the systems of modern commercial aircraft gas turbine engines. It is made for the reader who is familiar with the basic operation of aircraft gas turbine engine.
This book develops a modern presentation of Continuum Mechanics, oriented towards numerical applications in the ?elds of nonlinear analysis of solids, structures and ?uids. Kinematics of the continuum deformation, including pull-back/push-forward transformations between di erent con?gurations; stress and strain measures; objective stress rate and strain rate measures; balance principles; constitutive relations, with emphasis on elasto-plasticity of metals and variational prin- ples are developed using general curvilinear coordinates. Being tensor analysis the indispensable tool for the development of the continuum theory in general coordinates, in the appendix an overview of t- soranalysisisalsopresented. Embedded in the theoretical presentation, application examples are dev- oped to deepen the understanding of the discussed concepts. Even though the mathematical presentation of the di erent topics is quite rigorous; an e ort is made to link formal developments with engineering ph- ical intuition. This book is based on two graduate courses that the authors teach at the Engineering School of the University of Buenos Aires and it is intended for graduate engineering students majoring in mechanics and for researchers in the ?elds of applied mechanics and numerical methods. VIII Preface I am grateful to Klaus-Jurgen Bathe for introducing me to Computational Mechanics, for his enthusiasm, for his encouragement to undertake challenges and for his friendship."
In sport disciplines such as running, ice skating, bicycling and cross-country skiing the aerodynamic drag force constitutes the major obstacle to overcome. Furthermore, in ski jumping and in various activities involving a ball the aerodynamic lift force comes in addition into action. This book describes the various sport disciplines on the basis of aerodynamic analysis and also cover the biomechanics part by illustrative performance examples. Such treatment of the underlying physical phenomena of sport activities gives a valuable supplement to existing literature on sport. The reader will also be guided to references which exist for the various topics discussed, so she or he can go into a deeper study of the particular sport activity at wish. |
You may like...
Boundary Layer Flows - Theory…
Vallampati Ramachandra Prasad
Hardcover
R3,096
Discovery Miles 30 960
Secure Image Transmission in Wireless…
K Shankar, Mohamed Elhoseny
Hardcover
R2,653
Discovery Miles 26 530
Digital Communication Systems…
Alexander M. Wyglinski, Di Pu
Hardcover
R3,320
Discovery Miles 33 200
Introduction to Nonparametric Statistics…
Thomas W. MacFarland, Jan M. Yates
Hardcover
R3,131
Discovery Miles 31 310
|