![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
Despite dramatic advances in numerical and experimental methods of fluid mechanics, the fundamentals are still the starting point for solving flow problems. This textbook introduces the major branches of fluid mechanics of incompressible and compressible media, the basic laws governing their flow, and gas dynamics. Fluid Mechanics demonstrates how flows can be classified and how specific engineering problems can be identified, formulated and solved, using the methods of applied mathematics. The material is elaborated in special applications sections by more than 200 exercises and separately listed solutions. The final section comprises the Aerodynamics Laboratory, an introduction to experimental methods treating eleven flow experiments. This class-tested textbook offers a unique combination of introduction to the major fundamentals, many exercises, and a detailed description of experiments.
Modern fluid dynamics is a combination of traditional methods of theory and analysis and newer methods of computation and numerical simulation. Fluid Dynamics with a Computational Perspective synthesizes traditional theory and modern computation. It is neither a book on methods of computation, nor a book on analysis; it is about fluid dynamics. The book is ideal for a course on fluid dynamics. Early chapters review the laws of fluid mechanics and survey computational methodology, following chapters study flows in which the Reynolds number increases from creeping flow to turbulence, followed by a thorough discussion of compressible flow and interfaces. Whereas all significant equations and their solutions are presented, their derivations are informal. References for detailed derivations are provided. A chapter on intermediate Reynolds number flows provides illustrative case studies by pure computation. Elsewhere, computations and theory are interwoven.
Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
The present volume entitled "Recent Contributions to Fluid Mechanics" is dedicated to Professor Dr.-Ing. Alfred Walz in honour of his 75th birthday. Alfred Walz, born on 11 May 1907, began his outstanding career as an electrical engineer. A few years after obtaining his university degree he became extremely engaged in fluid dynamics. Walking in the footsteps of Prandtl he was able to direct the development of theoretical activities in an inimitable way. He had the great opportunity to work both as an engaged fluid dynamicist -always trying to get to the bottom of things -and as a popular and patient teacher. To all of these things - in his own words - he gave his heart. Consequently, it is a great pleasure to publish the following 34 contributions summarizing the efforts of 56 authors. These artic les in total cover the wide range of experimental as well as theore tical fluid dynamics and reflect the present state of the art. Moreover, all colleagues and friends of Alfred Walz wish that he may be able to continue his work and his influence on the work of all of us via his enlightening ideas. Friedrichshafen, August 1982 Werner Haase Chairman of the Scientific Committee Table of Contents SURVEY PAPER Shear Layer Studies - Past, Present, Future P. Bradshaw .......................................... ."
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercisesof 45 minutesbasedon this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps."
This booklet is an ideal supplement for any course in thermodynamics or the thermal fluid sciences and a handy reference for the practicing engineer. The tables in the booklet complement and extend the property tables in the appendices to Stephen Turn s Thermodynamics: Concepts and Applications and Thermal-Fluid Sciences: An Integrated Approach. In addition to duplicating the SI tables in these books it extends the tables to cover U.S. Customary units as well. The booklet also contains property data for the refrigerant R-134a and properties of the atmosphere at high altitudes.
Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.
In the last decades, a lot of effort has been directed towards manipulation of turbulent boundary layers by passive devices such as external manipulators (thin flat plates or aerofoil section devices embedded in the outer layer) and/or internal manipulators (small streamwise grooves acting directly on the inner region) for the purpose of reducing viscous drag. The former are commonly referred to as LEI3U s or BLADEs and the laHer riblets or grooves. Though the details of the mechanisms are not firmly understood, world-wide experimenta.! data are available and consistent enough in order to assert the potential of such devices for turbulent drag reduction. It should be noted that following on from recent and successful flight tests, the concept of using grooved surfaces is rather close to finding industrial applications. During the last few years, in Europe, there has been considerable interest in lookillg at the behaviour of such passi,'e turbulence manipulators. A lot of intense research, concerning both experimental and theoretical studies. has been carried out in some European research centres. For the last fi\'e years. informal gatherings. called ,.\ \'orking Pi\l'ty i\Ieetings" , have been set up, once a year; the aim of these meetings is not only to bring together European researchers acti,'e in the field of turbulent drag reduction by passi"e means and to hear about recent de\'c!opments but also to o u t1 ine sui tit ble directions for future research or collaborative programmes.
These two volumes contain the proceedings of the workshop on the Institute for Computer Instability and Transition, sponsored by Applications in Science and Engineering (ICASE) and the Langley Research Center (LaRC), during May 15 to June 9, 1989. The work shop coincided with the initiation of a new, focused research pro gram on instability and transition at LaRC. The objectives of the workshop were to (i) expose the academic community to current technologically important issues of instability and transition in shear flows over the entire speed range, (ii) acquaint the academic com munity with the unique combination of theoretical, computational and experimental capabilities at LaRC and foster interaction with these facilities, (iii) review current state-of-the-art and propose fu ture directions for instability and transition research, (iv) accelerate progress in elucidating basic understanding of transition phenomena and in transferring this knowledge into improved design methodolo gies through improved transition modeling, and (v) establish mech anisms for continued interaction. The objectives (i) to (iii) were of course immediately met. It is still premature to assess whether ob jectives (iv) and (v) are achieved. The workshop program consisted of tutorials, research presenta tions, panel discussions, experimental and computational demonstra tions, and collaborative projects.
Large Eddy Simulation is a relatively new and still evolving computatio nal strategy for predicting turbulent flows. It is now widely used in research to elucidate fundamental interactions in physics of turbulence, to predict phe nomena which are closely linked to the unsteady features of turbulence and to create data bases against which statistical closure models can be asses sed. However, its applicability to complex industrial flows, to which statisti cal models are applied routinely, has not been established with any degree of confidence. There is, in particular, a question mark against the prospect of LES becoming an economically tenable alternative to Reynolds-averaged N avier-Stokes methods at practically high Reynolds numbers and in complex geometries. Aerospace flows pose particularly challenging problems to LES, because of the high Reynolds numbers involved, the need to resolve accura tely small-scale features in the thin and often transitional boundary layers developing on aerodynamic surfaces. When the flow also contains a separated region - due to high incidence, say - the range and disparity of the influen tial scales to be resolved is enormous, and this substantially aggravates the problems of resolution and cost. It is just this combination of circumstances that has been at the heart of the project LESFOIL to which this book is devoted. The project combined the efforts, resources and expertise of 9 partner organisations, 4 universities, 3 industrial companies and 2 research institu tes."
C Specific heat at constant pressure p D Displacement field D Diffusion coefficient d D Orifice diameter E Electric field E Electron charge F Force G Acceleration due to gravity I Current J Current flux K Conductivity k Boltzmann constant B L Atomizer geometry: length from electrode tip to orifice plane i L Atomizer geometry : length of orifice channel o P Polarization Q Flow rate/Heat flux Q Charge r Atomizer geometry : electrode tip radius p T Time T Temperature U Velocity V Voltage W Energy X Distance Nomenclature (Greek) Thermal expansion coefficient ? Permittivity ? Permutation operator ? ijk Ion mobility ? VI Nomenclature Debye length ? D ? Dynamic viscosity ? Mass density Surface tension ? T Electrical conductivity ? ? Timescale ? Vorticity Nomenclature (Subscripts) Reference state ? o Cartesian tensor notation ? ijk Volume density (? per unit volume) ? v Surface density (? per unit area) ? s Linear density (? per unit length) ? l 'critical' state ? c Bulk mean injection ? inj Nomenclature (Superscripts) Time or ensemble averaged ? Contents Contents 1 Introduction................................................................... 1 1.1 Introduction and Scope.................................................. 1 1.2 Organization.............................................................. 3 2 Electrostatics, Electrohydrodynamic Flow, Coupling and Instability.................................................................. 5 2.1 Electrostatics.............................................................. 5 2.1.1 The Coulomb Force............................................. 5 2.1.2 Permittivity...................................................... 6 2.1.3 Conductors, Insulators, Dielectrics and Polarization........ 6 2.1.4 Gauss's Law...................................................... 8 2.2 Mobility and Charge Transport........................................ 10 2.2.1 Introduction...................................................... 10
Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.
The subject of the book is uid dynamics and heat transfer in micro-channels. This problem is important for understanding the complex phenomena associated with single- and two-phase ows in heated micro-channels. The challenge posed by high heat uxes in electronic chips makes thermal management a key factor in the development of these systems. Cooling of mic- electronic components by new cooling technologies, as well as improvement of the existing ones, is becoming a necessity as the power dissipation levels of integrated circuits increases and their sizes decrease. Miniature heat sinks with liquid ows in silicon wafers could signi cantly improve the performance and reliability of se- conductor devices. The improvements are made by increasing the effective thermal conductivity, by reducing the temperature gradient across the wafer, by reducing the maximum wafer temperature, and also by reducing the number and intensity of localized hot spots. A possible way to enhance heat transfer in systems with high power density is to change the phase in the micro-channels embedded in the device. This has motivated a number of theoretical and experimental investigations covering various aspects of heat transfer in micro-channel heat sinks with phase change. The ow and heat transfer in heated micro-channels are accompanied by a n- ber of thermohydrodynamic processes, such as liquid heating and vaporization, bo- ing, formation of two-phase mixtures with a very complicated inner structure, etc., which affect signi cantly the hydrodynamic and thermal characteristics of the co- ing systems.
A real boon for those studying fluid mechanics at all levels, this work is intended to serve as a comprehensive textbook for scientists and engineers as well as advanced students in thermo-fluid courses. It provides an intensive monograph essential for understanding dynamics of ideal fluid, Newtonian fluid, non-Newtonian fluid and magnetic fluid. These distinct, yet intertwined subjects are addressed in an integrated manner, with numerous exercises and problems throughout.
Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
Magnetic control of the properties and the flow of liquids is a challenging field for basic research and for applications. This book is meant to be both an introduction to, and a state-of-the-art review of, this topic. Written in the form of a set of lectures and tutorial reviews, the book addresses the synthesis and characterization of magnetic fluids, their hydrodynamical description and their rheological properties. The book closes with an account of magnetic drug targeting.
This is a unique collection of papers, all written by leading specialists, that presents the most recent results and advances in stability theory as it relates to fluid flows. The stability property is of great interest for researchers in many fields, including mathematical analysis, theory of partial differential equations, optimal control, numerical analysis, and fluid mechanics. This text will be essential reading for many researchers working in these fields.
The sixth ERCOFTAC Workshop on Direct and Large-Eddy Simulation (DLES-6) was held at the University of Poitiers from September 12-14, 2005. Following the tradition of previous workshops in the DLES-series, this edition has reflected the state-of-the-art of numerical simulation of transitional and turbulent flows and provided an active forum for discussion of recent developments in simulation techniques and understanding of flow physics."
A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.
Free Convective Heat Transfer is a thorough survey of various kinds of free-convective flows and heat transfer. Reference data are accompanied by a large number of photographs originating from different optical visualization methods illustrating the different types of flow. The formulas derived from numerical and analytical investigations are valuable tools for engineering calculations. They are written in their most compact and general form in order to allow for an extensive range of different variants of boundary and initial conditions, which, in turn, leads to a wide applicability to different flow types. Some specific engineering problems are solved in the book as exemplary applications of these formulas.
An extensive critical compilation of the wide range of manufacturing processes that involve the application of spray technology, this book covers design of atomizers as well as the performance of plant and their corresponding spray systems. The needs of practising engineers from different disciplines: project managers, and works, maintenance and design engineers are catered for. Of interest to researchers in the field of liquid sprays, the book includes outlines of the contemporary and possible future research and challenges in the different fields of application and deals with: sprays and their production; sprays in industrial production processes; processes involving vaporisation and cooling or cleaning of gases; spray-surface impact processes; fuel sprays for fixed plant; spraying of hot surfaces for steel making and other metals; spraying of molten metals. Guidance is given for the analysis and interpretation of experimental data obtained using different measurement techniques."
Geomaterials consist of a mixture of solid particles and void space that may be ?lled with ?uid and gas. The solid particles may be di?erent in sizes, shapes, and behavior; and the pore liquid may have various physical and chemical properties. Hence, physical, chemical or electrical interaction - tween the solid particles and pore ?uid or gas may take place. Therefore, the geomaterials in general must be considered a mixture or a multiphase material whose state is described by physical quantities in each phase. The stresses carried by the solid skeleton are typically termed "e?ective stress" while the stresses carried by the pore liquid are termed "pore pressure. " The summation of the e?ective stress and pore pressure is termed "total stress" (Terzaghi, 1943). For a free drainage condition or completely undrained c- dition, the pore pressure change is zero or depends only on the initial stress condition; it does not depend on the skeleton response to external forces. Therefore, a single phase description of soil behavior is adequate. For an intermediate condition, however, some ?ow (pore pressure leak) may take place while the force is applied and the skeleton is under deformation. Due to the leak of pore pressure, the pore pressure changes with time, and the e?ective stress changes and the skeleton deforms with time accordingly. The solution of this intermediate condition, therefore, requires a multi-phase c- tinuum formulations that may address the interaction of solid skeleton and pore liquid interaction.
There is a certain body of knowledge and methods that finds application in most branches of fluid mechanics. This book aims to supply a proper theoretical understanding that will permit sensible simplifications to be made in the formulation of problems, and enable the reader to develop analytical models of practical significance. Such analyses can be used to guide more detailed experimental and numerical investigations. As in most technical subjects, such understanding is acquired by detailed study of highly simplified 'model problems'. The first part (Chapters 1-4) is concerned entirely with the incompressible flow of a homogeneous fluid. It was written for the Boston University introductory graduate level course 'Advanced Fluid Mechanics'. The remaining Chapters 5 and 6 deal with dispersive waves and acoustics, and are unashamedly inspired by James Lighthill's masterpiece, Waves in Fluids.
Mathematicalmodelingofhumanphysiopathologyisatremendouslyambitioustask. It encompasses the modeling of most diverse compartments such as the cardiovas- lar, respiratory, skeletalandnervoussystems, aswellasthemechanicalandbioch- ical interaction between blood ?ow and arterial walls, and electrocardiac processes and electric conduction in biological tissues. Mathematical models can be set up to simulate both vasculogenesis (the aggregation and organization of endothelial cells dispersed in a given environment) and angiogenesis (the formation of new vessels sprouting from an existing vessel) that are relevant to the formation of vascular networks, and in particular to the description of tumor growth. The integration of models aimed at simulating the cooperation and interrelation of different systems is an even more dif?cult task. It calls for the setting up of, for instance, interaction models for the integrated cardio-vascular system and the interplay between the central circulation and peripheral compartments, models for the mid-to-long range cardiovascular adjustments to pathological conditions (e.g., to account for surgical interventions, congenital malformations, or tumor growth), models for integration among circulation, tissue perfusion, biochemical and thermal regulation, models for parameter identi?cation and sensitivity analysis to parameter changes or data uncertainty - and many othe
Everything important, up-to-date and practical about turbopumps can be found in this book. The material is arranged to cover the most important topics, from basic theories to practical applications. This book can also serve as a useful textbook for students who are taking courses in the area of turbopumps and hydraulic machineries. It is the complete reference book for turbopumps. |
You may like...
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
Know and Understand Centrifugal Pumps
L. Bachus, A. Custodio
Hardcover
R2,361
Discovery Miles 23 610
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,275
Discovery Miles 72 750
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R3,925
Discovery Miles 39 250
The Finite Element Method for Fluid…
Olek C. Zienkiewicz, R.L. Taylor, …
Hardcover
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
|