![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
In 2003 the German Research Foundation established a new priority programme on the subject of "Imaging Measurement Methods for Flow Analysis" (SPP 1147). This research programme was based on the fact that experimental ?ow analysis, in addition to theory and numerics, has always played a predominant part both in ?ow research and in other areas of industrial practice. At the time, however, c- parisons with numerical tools (such as Computational Fluid Dynamics), which were increasingly used in research and practical applications, soon made it clear that there are relatively few experimental procedures which can keep up with state-of-the-art numerical methods in respect of their informative value, e.g. with regard to visu- spatial analysis or the dynamics of ?ow ?elds. The priority programme "Imaging Measurement Methods for Flow Analysis" was to help close this development gap. Hence the project was to focus on the investigation of ef?cient measurement me- ods to analyse complex spatial ?ow ?elds. Speci?c cooperations with computer sciences and especially measurement physics were to advance ?ow measurement techniques to a widely renowned key technology, exceeding the classical ?elds of ?uid mechanics by a long chalk.
This book brings together the quick integral approaches and advances in the field for the prediction of stall and surge problems in the compressor. The book is useful for people involved in the flow analysis, design and testing of rotating machinery. For students, it can be used as a specialized topic of senior undergraduate or graduate study. The book can also serve as self-study material.
Flow meters measure the volumetric flow rate in a pipeline. Most meters are based on deriving a signal from the fluid flow and calibrating the signal against the volumetric flow rate. The calibration is done in fully-developed flow, and the same state of flow must exist at the meter's position when it is in practical use. Because the field of flow metering has been neglected by fluid mechanicists for a long time, this book addresses two major fluid mechanical problems in flow metering: the analysis of signal generation in turbulent pipe flow, which explains the function of the meter beyond a simple calibration, and the possible use of a meter in non-developed flows. These problems are investigated with reference to, and examples from, a variety of meters, e.g. ultrasound cross-correlation meters, vortex meters, and turbine meters. Studying these problems requires consideration of specific phenomena in turbulent non-developed pipe flow, as caused by installations, and finding special solutions with signal processing, both of which are included in the book.
Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
The study of capillarity is in the midst of a veritable explosion. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles designed for the undergraduate student and for readers interested in the physics underlying these phenomena.
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercisesof 45 minutesbasedon this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps."
Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.
Magnetic control of the properties and the flow of liquids is a challenging field for basic research and for applications. This book is meant to be both an introduction to, and a state-of-the-art review of, this topic. Written in the form of a set of lectures and tutorial reviews, the book addresses the synthesis and characterization of magnetic fluids, their hydrodynamical description and their rheological properties. The book closes with an account of magnetic drug targeting.
Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.
The subject of the book is uid dynamics and heat transfer in micro-channels. This problem is important for understanding the complex phenomena associated with single- and two-phase ows in heated micro-channels. The challenge posed by high heat uxes in electronic chips makes thermal management a key factor in the development of these systems. Cooling of mic- electronic components by new cooling technologies, as well as improvement of the existing ones, is becoming a necessity as the power dissipation levels of integrated circuits increases and their sizes decrease. Miniature heat sinks with liquid ows in silicon wafers could signi cantly improve the performance and reliability of se- conductor devices. The improvements are made by increasing the effective thermal conductivity, by reducing the temperature gradient across the wafer, by reducing the maximum wafer temperature, and also by reducing the number and intensity of localized hot spots. A possible way to enhance heat transfer in systems with high power density is to change the phase in the micro-channels embedded in the device. This has motivated a number of theoretical and experimental investigations covering various aspects of heat transfer in micro-channel heat sinks with phase change. The ow and heat transfer in heated micro-channels are accompanied by a n- ber of thermohydrodynamic processes, such as liquid heating and vaporization, bo- ing, formation of two-phase mixtures with a very complicated inner structure, etc., which affect signi cantly the hydrodynamic and thermal characteristics of the co- ing systems.
Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
A real boon for those studying fluid mechanics at all levels, this work is intended to serve as a comprehensive textbook for scientists and engineers as well as advanced students in thermo-fluid courses. It provides an intensive monograph essential for understanding dynamics of ideal fluid, Newtonian fluid, non-Newtonian fluid and magnetic fluid. These distinct, yet intertwined subjects are addressed in an integrated manner, with numerous exercises and problems throughout.
This textbook discusses the fundamental principles of sediment transport in the geophysical context of rivers and is intended as both a course textbook and as a guide for the practical engineer. We begin by describing phenomena such as bed load and suspension transport from a classical perspective by applying the mean wall shear stress approach while additionally incorporating a statistical description of the inherent wall shear stress fluctuations. Concepts from turbulent flow regime are introduced to address the limitations of the classical approach to various aspects of sediment transport, such as for example, the Newtonian description of dense suspensions, or the description of the self-organization processes for developing bed forms, or the prediction of transport in very rough bed conditions. In this context coherent structures and flow separation mechanisms are developed as important new elements, which allow using topological rules for the formulation of transport especially for developing bed forms. Since the most up-to-date research findings in the field are presented, this book serves as both a support in the formulation of academic research programs, and as a practical text for engineers seeking to simulate complex problems or special aspects of sediment transport. This book will therefore be of interest and of use to both students and to the professional scientist.
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.
Aircraft design processes require extensive work in the area of both aerodynamics and structure, fonning an environment for aeroelasticity investigations. Present and future designs of European aircraft are characterized by an ever increasing aircraft size and perfonnance. Strong weight saving requirements are met by introduction of new materials, leading to more flexible structure of the aircraft. Consequently, aeroelastic phenomena such as vortex-induced aeroelastic oscillations and moving shock waves can be predominant and may have a significant effect on the aircraft perfonnance. Hence, the ability to estimate reliable margins for aeroelastic instabilities (flutter) or dynamic loads (buffeting) is a major concern to the aircraft designer. As modern aircrafts have wing bending modes with frequencies that are low enough to influence the flight control system, demands on unsteady aerodynamics and structural analysis to predict flight control effectiveness and riding comfort for passengers are extremely high. Therefore, the aircraft industries need an improved capacity of robust, accurate and reliable prediction methods in the coupled aeroelastic, flight mechanics and loads disciplines. In particular, it is necessary to develop/improve and calibrate the numerical tools in order to predict with high level of accuracy and capability complex and non-classical aeroelastic phenomena, including aerodynamic non-linearities, such as shock waves and separation, as well as structural non-linearities, e. g. control surface free-play. Nowadays, robust methods for structural analysis and linearised unsteady aerodynamics are coupled and used by the aircraft industry to computationally clear a new design from flutter.
This is a unique collection of papers, all written by leading specialists, that presents the most recent results and advances in stability theory as it relates to fluid flows. The stability property is of great interest for researchers in many fields, including mathematical analysis, theory of partial differential equations, optimal control, numerical analysis, and fluid mechanics. This text will be essential reading for many researchers working in these fields.
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.
This volume offers of the EU-funded 5th Framework project, FLOMANIA (Flow Physics Modelling - An Integrated Approach). The book presents an introduction to the project, exhibits partners' methods and approaches, and provides comprehensive reports of all applications treated in the project. A complete chapter is devoted to a description of turbulence models used by the partners together with a section on lessons learned, accompanied by a comprehensive list of references.
In this monograph, the density ?uctuation theory of transport coe?cients of simple and complex liquids is described together with the kinetic theory of liquids, the generic van der Waals equation of state, and the modi?ed free volume theory. The latter two theories are integral parts of the density ?- tuation theory, which enables us to calculate the density and temperature dependence of transport coe?cients of liquids from intermolecular forces. The terms nanoscience and bioscience are the catch phrases currently in fashion in science. It seems that much of the fundamentals remaining unsolved or poorly understood in the science of condensed matter has been overshadowed by the frenzy over the more glamorous disciplines of the former, shunned by novices, and are on the verge of being forgotten. The transport coe?cients of liquids and gases and related thermophysical properties of matter appear to be one such area in the science of macroscopic properties of molecular systems and statisticalmechanicsofcondensedmatter. Evennano-andbiomaterials, h- ever, cannot be fully and appropriately understood without ?rm grounding and foundations in the macroscopic and molecular theories of transport pr- ertiesandrelatedthermophysicalpropertiesofmatterinthecondensedphase. Oneisstilldealingwithsystemsmadeupofnotafewparticlesbutamultitude of them, often too many to count, to call them few-body problems that can be understoodwithoutthehelpofstatisticalmechanicsandmacroscopicphysics. In the density ?uctuation theory of transport coe?cients, the basic approach taken is quite di?erent from the approaches taken in the conventional kinetic theories of gases and liquids
An extensive critical compilation of the wide range of manufacturing processes that involve the application of spray technology, this book covers design of atomizers as well as the performance of plant and their corresponding spray systems. The needs of practising engineers from different disciplines: project managers, and works, maintenance and design engineers are catered for. Of interest to researchers in the field of liquid sprays, the book includes outlines of the contemporary and possible future research and challenges in the different fields of application and deals with: sprays and their production; sprays in industrial production processes; processes involving vaporisation and cooling or cleaning of gases; spray-surface impact processes; fuel sprays for fixed plant; spraying of hot surfaces for steel making and other metals; spraying of molten metals. Guidance is given for the analysis and interpretation of experimental data obtained using different measurement techniques."
Free Convective Heat Transfer is a thorough survey of various kinds of free-convective flows and heat transfer. Reference data are accompanied by a large number of photographs originating from different optical visualization methods illustrating the different types of flow. The formulas derived from numerical and analytical investigations are valuable tools for engineering calculations. They are written in their most compact and general form in order to allow for an extensive range of different variants of boundary and initial conditions, which, in turn, leads to a wide applicability to different flow types. Some specific engineering problems are solved in the book as exemplary applications of these formulas.
Geomaterials consist of a mixture of solid particles and void space that may be ?lled with ?uid and gas. The solid particles may be di?erent in sizes, shapes, and behavior; and the pore liquid may have various physical and chemical properties. Hence, physical, chemical or electrical interaction - tween the solid particles and pore ?uid or gas may take place. Therefore, the geomaterials in general must be considered a mixture or a multiphase material whose state is described by physical quantities in each phase. The stresses carried by the solid skeleton are typically termed "e?ective stress" while the stresses carried by the pore liquid are termed "pore pressure. " The summation of the e?ective stress and pore pressure is termed "total stress" (Terzaghi, 1943). For a free drainage condition or completely undrained c- dition, the pore pressure change is zero or depends only on the initial stress condition; it does not depend on the skeleton response to external forces. Therefore, a single phase description of soil behavior is adequate. For an intermediate condition, however, some ?ow (pore pressure leak) may take place while the force is applied and the skeleton is under deformation. Due to the leak of pore pressure, the pore pressure changes with time, and the e?ective stress changes and the skeleton deforms with time accordingly. The solution of this intermediate condition, therefore, requires a multi-phase c- tinuum formulations that may address the interaction of solid skeleton and pore liquid interaction.
Mathematicalmodelingofhumanphysiopathologyisatremendouslyambitioustask. It encompasses the modeling of most diverse compartments such as the cardiovas- lar, respiratory, skeletalandnervoussystems, aswellasthemechanicalandbioch- ical interaction between blood ?ow and arterial walls, and electrocardiac processes and electric conduction in biological tissues. Mathematical models can be set up to simulate both vasculogenesis (the aggregation and organization of endothelial cells dispersed in a given environment) and angiogenesis (the formation of new vessels sprouting from an existing vessel) that are relevant to the formation of vascular networks, and in particular to the description of tumor growth. The integration of models aimed at simulating the cooperation and interrelation of different systems is an even more dif?cult task. It calls for the setting up of, for instance, interaction models for the integrated cardio-vascular system and the interplay between the central circulation and peripheral compartments, models for the mid-to-long range cardiovascular adjustments to pathological conditions (e.g., to account for surgical interventions, congenital malformations, or tumor growth), models for integration among circulation, tissue perfusion, biochemical and thermal regulation, models for parameter identi?cation and sensitivity analysis to parameter changes or data uncertainty - and many othe
C Specific heat at constant pressure p D Displacement field D Diffusion coefficient d D Orifice diameter E Electric field E Electron charge F Force G Acceleration due to gravity I Current J Current flux K Conductivity k Boltzmann constant B L Atomizer geometry: length from electrode tip to orifice plane i L Atomizer geometry : length of orifice channel o P Polarization Q Flow rate/Heat flux Q Charge r Atomizer geometry : electrode tip radius p T Time T Temperature U Velocity V Voltage W Energy X Distance Nomenclature (Greek) Thermal expansion coefficient ? Permittivity ? Permutation operator ? ijk Ion mobility ? VI Nomenclature Debye length ? D ? Dynamic viscosity ? Mass density Surface tension ? T Electrical conductivity ? ? Timescale ? Vorticity Nomenclature (Subscripts) Reference state ? o Cartesian tensor notation ? ijk Volume density (? per unit volume) ? v Surface density (? per unit area) ? s Linear density (? per unit length) ? l 'critical' state ? c Bulk mean injection ? inj Nomenclature (Superscripts) Time or ensemble averaged ? Contents Contents 1 Introduction................................................................... 1 1.1 Introduction and Scope.................................................. 1 1.2 Organization.............................................................. 3 2 Electrostatics, Electrohydrodynamic Flow, Coupling and Instability.................................................................. 5 2.1 Electrostatics.............................................................. 5 2.1.1 The Coulomb Force............................................. 5 2.1.2 Permittivity...................................................... 6 2.1.3 Conductors, Insulators, Dielectrics and Polarization........ 6 2.1.4 Gauss's Law...................................................... 8 2.2 Mobility and Charge Transport........................................ 10 2.2.1 Introduction...................................................... 10 |
You may like...
Computer Mathematics - 9th Asian…
Ruyong Feng, Wen-shin Lee, …
Hardcover
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
New Developments in Statistical…
Zhezhen Jin, Mengling Liu, …
Hardcover
R4,614
Discovery Miles 46 140
Big Data - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R17,613
Discovery Miles 176 130
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
|