![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
Turbulence is widely recognized as one of the outstanding problems of the physical sciences, but it still remains only partially understood despite having attracted the sustained efforts of many leading scientists for well over a century. In A Voyage Through Turbulence we are transported through a crucial period of the history of the subject via biographies of twelve of its great personalities, starting with Osborne Reynolds and his pioneering work of the 1880s. This book will provide absorbing reading for every scientist, mathematician and engineer interested in the history and culture of turbulence, as background to the intense challenges that this universal phenomenon still presents.
Focuses on the methods of solving incompressible flows, although flows with significant property change due to heat transfer are also covered. Covers turbulent flow simulation, unstructured mesh, and two-phase flows. Uses a practical approach for CFD to build a foundation for those planning to work on low-speed flows. Provides detailed steps of solving 1-D and 2-D flow examples and MATLAB (R) codes of important algorithms. Includes numerous real-word examples and worked problems.
Uses an integrated approach to show the interrelationships between thermodynamics, heat transfer and fluid dynamics, stressing the physics of each. Mathematical description is included to allow the solution of simple problems in thermal sciences. New to this edition----SI and English units plus twice as many example problems which emphasize practical applications of the principles discussed.
In this book an introduction is given to aspects of water waves that play a role in ship hydrodynamics and offshore engineering. At first the equations and linearized boundary conditions are derived describing the non-viscous free surface water waves, with special attention to the combination of steady and non-steady flow fields. Then some simple kinds of free wave solutions are derived, such as plane waves and cylindrical waves. For several situations, steady and unsteady, the source singularity function is derived. These functions play a role in numerical codes used to describe the motion of ships and offshore structures. These codes are mostly based on a boundary integral formulation; therefore we give an introduction to these methods. It is shown how first order ship motions can be determined. In offshore engineering the second order wave drift motions play an important role. An introduction to this phenomenon is given and the effects which have to be taken into account are explained by means of a simple example where we can determine nearly all the aspects analytically. An interesting example that is worked out is the motion of very large floating flexible platforms with finite draft. Finally an introduction to the theory of shallow water non-linear dispersive waves is presented, and shallow water ship hydrodynamics, that plays a role in coastal areas and channels is treated. Here attention is paid to the interaction between passing ships in restricted water. In the appendix a short introduction to some of the mathematical tools is given.
This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.
This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges of NTU and C* values in all cases. The proposed procedure constitutes a useful research tool for both theoretical and experimental studies of cross-flow heat exchangers. The following are the unique features of the book: - The monograph includes the computational code named HETE (Heat Exchanger Thermal Effectiveness) in Chapter 5. A version of this code is available for downloading. - The computational procedure could be used for reducing experimental data using the effectiveness - NTU (e-NTU) method in research and industrial laboratories. - Even after more than one century in heat exchanger research, the search for new flow arrangements with higher effectiveness still is an unsolved problem. The present methodology could be a useful tool in pursuing that goal.
This 2007 book presents the development of modern molecular models for fluids from the interdisciplinary fundamentals of classical and statistical mechanics, of electrodynamics and of quantum mechanics. The concepts and working equations of the various fields are briefly derived and illustrated in the context of understanding the properties of molecular systems. Special emphasis is devoted to the quantum mechanical basis, since this is used throughout in the calculation of the molecular energy of a system. The book is application oriented. It stresses those elements that are essential for practical model development. The fundamentals are then used to derive models for various types of applications. Finally, equation of state models are presented based on quantum chemically based models for the intermolecular potential energy and perturbation theory. The book is suited for graduate courses in chemical and mechanical engineering, physics and chemistry, but may also, by proper selection, be found useful on the undergraduate level.
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by internationally-leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics.
Physically correct boundary conditions on vapor-liquid interfaces are essential in order to make an analysis of flows of a liquid including bubbles or of a gas including droplets. Suitable boundary conditions do not exist at the present time. This book is concerned with the kinetic boundary condition for both the plane and curved vapor-liquid interfaces, and the fluid dynamics boundary condition for Navier-Stokes(fluid dynamics) equations. The kinetic boundary condition is formulated on the basis of molecular dynamics simulations and the fluid dynamics boundary condition is derived by a perturbation analysis of Gaussian-BGK Boltzmann equation applicable to polyatomic gases. The fluid dynamics boundary condition is applied to actual flow problems of bubbles in a liquid and droplets in a gas.
This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in liquid greatly depends on heat flux in the interface. Thus a new type of hydrostatic problems appears when in contrast to traditional statements the shape of the liquid-vapor interface has a complex profile with a point of inflection and a smooth exit on a free liquid surface.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.
Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data have on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors' field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.
The physical properties of fluids are perhaps among the most extensively investigated physical constants of any single group of materials. This is particularly true of the thermodynamic prop erties of pure substances since the condition of thermodynamic equilibrium provides the simplest considerations for experimental measurement as well as theoretical treatment. In the case of non equilibrium transport properties, the situation is significantly complicated by the necessity of measurement of gradients in the experiment and the mathematical difficulties in handling non equilibrium distribution functions in theoretical treatments. Hence, our knowledge of the trans port properties of gases and liquids is perhaps one order of magnitude lower than for equilibrium thermodynamic properties. This situation is very much apparent when examining the available nu merical data on the viscosity of fluids particularly at high pressures. In this work, the authors have performed an outstanding contribution to the engineering literature by their critical evaluation of the pressure dependence of the available data on the viscosity of selected substances. The recommended values reported in the tables and figures also incorporate the saturated liquid and gas states as well as the data of the dilute gas in an attempt to integrate the present work with the recently published work by CINDAS/Purdue University on the viscosity of fluids at low pressures 166]. A deliberate effort was made to treat as many of the substances in the CINDAS volume as possible for which adequate high pressure data exist."
This collection is dedicated to the 70th jubilee of Yu. N.
Savchenko, and presents experimental, theoretical, and numerical
investigations written by an international group of well-known
authors. The contributions solve very important problems of the
high-speed hydrodynamics, such as supersonic motion in water, drag
diminishing, dynamics and stability of supercavitating vehicles,
water entry and hydrodynamic performances of hydrofoils, ventilated
cavities after a disc and under the ship bottom.
The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.
Essays are written to fulfill the needs of both teachers and graduate students; Problems have been selected so that they can be solved by hand; Discussion notes are at the end of many of the essays to serve as a basis for discussion; Endnotes provide background information which the reader may need in order to enjo the essay
In September 2000, the University of Bayreuth, Germany, hosted the Fourth International Meeting on Thermodi?usion (IMT4). TheIMTconferenceswerebornfromtheideaofbringingtogetherresearchers in the ?eld of thermodi?usion. Under the auspices of the European Group of Research in Thermodi?usion(EGRT)theconferenceseriesstartedin1994with IMT1 in Toulouse and has been continued every other year with IMT2 (Pau, 1996), IMT3 (Mons, 1998), and IMT4 (Bayreuth, 2000). The next conference, IMT5, will be held in 2002 in Lyngby, Denmark. Thermodi?usion, alsocalledthermaldi?usionortheLudwig-Sorete?ect, - scribes the coupling between a temperature gradient and a resulting mass ?ux. Although the e?ect was already discovered in the 19th century by Ludwig and Soret, it has gained growing interest during the last years due to improved - perimentaltechniqueslikestate-of-the-artthermogravitationalcolumns, modern opticalmethods, ?owchannels, andmicrogravityexperiments, tomentiononlya few. We are still far from a detailed microscopic picture, but analytical theories have been improved and the availability of fast computers and e?cient al- rithmsfornonequilibriummoleculardynamicssimulationshasprovidedvaluable input from the theoretical side. TheIMTconferencescoverallaspectsofthermodi?usionfromfundamentals to new applications. Traditionally, the focus has been on the ?uid state, ra- ing from mixtures of simple liquids to more complex systems such as critical mixtures, electrolytes, polymers, colloidal dispersions, or magnetic ?uids. IMT4 tried to widen the scope by including a plenary lecture about thermodi?usion in ionic solids. Scienti?c input comes from diverse disciplines such as physics, chemistry, engineering, and geophysics. Sadly, Leo Kempers passed away while this book was being prepared. Many ofushavelostafriendandrespectedcolleague.Hismanuscripthasbeenbrought into its ?nal state by A. Shapiro, whom we want to thank
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig s activities and of the latest developments in the field. Thisvolume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. Thisvolume offers the best syntheses on the research status in KS, which iswidely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, particle dispersion/clustering, and last but not least, aeroacoustics. Flow realizations with complete spatial, and sometime spatio-temporal, dependency, are generated via superposition of random modes (mostly spatial, and sometime spatial and temporal, Fourier modes), with prescribed constraints such as: strict incompressibility (divergence-free velocity field at each point), high Reynolds energy spectrum. Recent improvements consisted in incorporating linear dynamics, for instance in rotating and/or stably-stratified flows, with possible easy generalization to MHD flows, and perhaps to plasmas. KS for channel flows have also been validated. However, the absence of "sweeping effects" in present conventional KS versions is identified as a major drawback in very different applications: inertial particle clustering as well as in aeroacoustics. Nevertheless, this issue was addressed in some reference papers, and merits to be revisited in the light of new studies in progress. "
Computational Fluid Dynamics (CFD) has been applied extensively to great benefit in the food processing sector. Its numerous applications include: predicting the gas flow pattern and particle histories, such as temperature, velocity, residence time, and impact position during spray drying;modeling of ovens to provide information about temperature and airflow pattern throughout the baking chamber to enhance heat transfer and in turn final product quality; designing hybrid heating ovens, such as microwave-infrared, infrared-electrical or microwave-electrical ovens for rapid baking; model the dynamics of gastrointestinal contents during digestion based on the motor response of the GI tract and the physicochemical properties of luminal contents; retort processing of canned solid and liquid foods for understanding and optimization of the heat transfer processes. This Brief will recapitulate the various applications of CFD modeling, discuss the recent developments in this field, and identify the strengths and weaknesses of CFD when applied in the food industry. "
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations -primarily combustion - and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR's) and Internal Combustion Engines (ICE's). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be welcomed by both academia and industry.
This book will consist of a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES and Low Order Dynamical Systems.
The second Workshop on "Quality and Reliability of Large-Eddy Simulations", QLES2009, was held at the University of Pisa from September 9 to September 11, 2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The focus of QLES2009 was on issues related to predicting, assessing and assuring the quality of LES. The main goal of QLES2009 was to enhance the knowledge on error sources and on their interaction in LES and to devise criteria for the prediction and optimization of simulation quality, by bringing together mathematicians, physicists and engineers and providing a platform specifically addressing these aspects for LES. Contributions were made by leading experts in the field. The present book contains the written contributions to QLES2009 and is divided into three parts, which reflect the main topics addressed at the workshop: (i) SGS modeling and discretization errors; (ii) Assessment and reduction of computational errors; (iii) Mathematical analysis and foundation for SGS modeling.
Micropolar fluids are fluids with microstructure belonging to a class of fluids with nonsymmetrical stress sensor referred to as polar fluids. Physically, they represent fluids consisting of randomly oriented particles suspended in a viscous medium, and they are important to engineers and scientists working with hydrodynamic-fluid problems and phenomena. The goal of this volume is to provide a comprehensive exposition of the principles and methods of micropolar fluids for a broad readership in the science and engineering of fluid mechanics. Organized into three parts, the first part of the book presents the basic model of micropolar fluids, with necessary background information. Provided in the second part is a thorough presentation of the analysis of the mathematics of motion of micropolar fluids, with many detailed examples. Some select and important applications in the topics of lubrication theory and porous media are discusssed in the third part.Topics and Features: * Comprehensive and unified view of the subject, with clear foundations for the basic model * Chapter exercises and carefully chosen examples to reinforce the material * Coverage of numerical algorithm for behavior of micropolar fluids in a bounded domain * Discussions of exact solutions for microrotation and velocity fields for some classical fluids flows This study serves as an up-to-date and comprehensive reference for mathematicians, scientists, and engineers. Micropolar Fluids is an essential resource for anyone wishing to understand and needing to use concepts and methods when working with the hydrodynamics of miropolar fluids.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography. |
You may like...
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,275
Discovery Miles 72 750
Water (R718) Turbo Compressor and…
Milan N. Sarevski, Vasko N. Sarevski
Paperback
The Mechanics of Inhaled Pharmaceutical…
Warren H. Finlay
Paperback
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
The Finite Element Method for Fluid…
Olek C. Zienkiewicz, R.L. Taylor, …
Hardcover
Know and Understand Centrifugal Pumps
L. Bachus, A. Custodio
Hardcover
R2,361
Discovery Miles 23 610
Advances in Mechanics of Microstructured…
Francesco Dell'Isola, Victor A. Eremeyev, …
Hardcover
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R3,925
Discovery Miles 39 250
|