![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
This book concerns the theoretical foundations of hydro mechanics of Pelton turbines from a viewpoint of engineering. For reference purposes all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understanding the related flow mechanics.
In this authoritative and comprehensive volume, Claude Bardos and Andrei Fursikov have drawn together an impressive array of international contributors to present important recent results and perspectives in this area. The main subjects that appear here relate largely to mathematical aspects of the theory but some novel schemes used in applied mathematics are also presented. Various topics from control theory, including Navier-Stokes equations, are covered.
The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fundamental science background that is required for the study of microfluidics and nanofluidics. Both volumes include as much interdisciplinary knowledge as possible to reflect the inherent nature of this area, valuable to students and practitioners.
In the tradition of its predecessors, this volume comprises a
selection of the best papers presented at the Ninth International
Symposium on Applications of Laser Techniques to Fluid Mechanics,
held in Lisbon in July 2000.
The book contains high quality papers presented in conference Recent Advances in Mechanical Infrastructure (ICRAM-2019) held at IITRAM, Ahmedabad, India from 20-21 April, 2019.The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
The interaction of sound waves with the medium through which they
pass can be used to investigate the thermophysical properties of
that medium. With the advent of modern instrumentation, it is now
possible to determine the speed and absorption of sound with
extremely high precision and, through the dependence of those
quantities on variables like temperature, pressure, and frequency
to gain a sensitive measure of one or more properties of fluid.
This has led to renewed interest in such measurements and in the
extraction of thermophysical properties of gases and liquids there
from.
Although the application boundary element method (BEM) has a long history in computational fluid dynamics which dates back to the late 1950s and early 1960s, its developments as a problem-solving tool for general problems of fluid dynamics did not start until recently. Taking as its theme time dependent and time-harmonic problems in engineering, this volume demonstrates that boundary element methods are both elegant and efficient in their application to such problems and therefore worthy of considerable development. The text contains a collection of reviews comprising state-of-the-art applications of BEM to nonlinear problems. Subjects covered include: Helmholtz and Poincare potential-vorticity decompositions for the analysis of unsteady compressible viscous flows; advanced boundary element methods for steady incompressible thermoviscous flow; a time-dependent incompressible viscous BEM for moderate Reynolds numbers; a boundary integral formulation in primitive variables for unsteady viscous flows; Newtonian and non-Newtonian unsteady flow problems; a general theory of unsteady compressible potential flows with applications to airplanes and rotors; recent advances in solution metho
A sourcebook offering an up-to-date perspective on a variety of topics and using practical, applications-oriented data necessary for the design and evaluation of internal fluid system pressure losses. It has been prepared for the practicing engineer who understands fluid-flow fundamentals.
Fluid Dynamics via Examples and Solutions provides a substantial set of example problems and detailed model solutions covering various phenomena and effects in fluids. The book is ideal as a supplement or exam review for undergraduate and graduate courses in fluid dynamics, continuum mechanics, turbulence, ocean and atmospheric sciences, and related areas. It is also suitable as a main text for fluid dynamics courses with an emphasis on learning by example and as a self-study resource for practicing scientists who need to learn the basics of fluid dynamics. The author covers several sub-areas of fluid dynamics, types of flows, and applications. He also includes supplementary theoretical material when necessary. Each chapter presents the background, an extended list of references for further reading, numerous problems, and a complete set of model solutions.
Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics—before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections:
This book introduces an interesting and alternative way to design absorbing boundary conditions (ABCs) for quantum wave equations, basically the nonlinear Schroedinger equation. The focus of this book is the application of the phase space filter approach to derive accurate radiation conditions for Schroedinger equations. Researchers who are interested in partial differential equations and mathematical physics might find this book appealing.
Fluid Transport: Pipes, part of the Industrial Equipment for Chemical Engineering set, provides a description and calculation of the essential equipment used for fluid transport. Gas-liquid flows are studied with regard to the nature of this type of flow, along with the pressure drop that they may trigger. Many numerical examples are offered, and the calculation of a fluid transport line is detailed. The vacuum technique and the behavior of non-Newtonian liquids is thoroughly presented, and the author also provides the methods needed for understanding the equipment used in applied thermodynamics to encourage students and engineers to self build the programs they need. Chapters are complemented with appendices that provide additional information and associated references.
This book offers comprehensive coverage of compressible flow phenomena and their applications, and is intended for undergraduate/graduate students, practicing professionals, and researchers interested in the topic. Thanks to the clear explanations provided of a wide range of basic principles, the equations and formulas presented here can be understood with only a basic grasp of mathematics. The book particularly focuses on shock waves, offering a unique approach to the derivation of shock wave relations from conservation relations in fluids together with a contact surface, slip line or surface; in addition, the thrust of a rocket engine and that of an air-breathing engine are also formulated. Furthermore, the book covers important fundamentals of various aspects of physical fluid dynamics and engineering, including one-dimensional unsteady flows, and two-dimensional flows, in which oblique shock waves and Prandtl-Meyer expansion can be observed.
This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains MATLAB codes, and C programming language based User-Defined Function (UDF) codes which can be compiled in the ANSYS-FLUENT environment. The computer codes help to understand and use efficiently a new concept which can also be implemented in any other software packages. The simulation results are compared to classical analytical solutions and experimental data taken from the literature. A particular attention is paid to how to obtain accurate results within a reasonable computational time for wide range of benchmark problems. The provided examples and programming techniques help graduate and postgraduate students, engineers and researchers to further develop their technical skills and knowledge.
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world's first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
This successful textbook emphasizes the unified nature of all the disciplines of Fluid Mechanics as they emerge from the general principles of continuum mechanics. The different branches of Fluid Mechanics, always originating from simplifying assumptions, are developed according to the basic rule: from the general to the specific. The first part of the book contains a concise but readable introduction into kinematics and the formulation of the laws of mechanics and thermodynamics. The second part consists of the methodical application of these principles to technology. In addition, sections about thin-film flow and flow through porous media are included.
This volume contains selected presentations of the 3rd International PAMIR Conference on Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows held at the Paul Langevin Centre in Aussois, France, in September 1997. The main scientific domain of the conference was the interaction between a magnetic field and a conducting fluid, which can be either an electrolyte (with low electrical conductivity) or a liquid metal (with high electrical conductivity). One of the perspectives of the conference was to facilitate the interaction between the MHD and chemical engineering communities. Thus, the connection between mass transfer in electrochemical systems and magnetic fields (sometimes called magnetoelectrolysis) was introduced for the first time as a topic of the conference. This offered a new class of problems to the MHD community. The presentations focused on four main topics related to interfacial heat and mass transfer phenomena, energetic applications, the dynamo effect and MEHD phenomena, and they encompassed both numerical and experimental studies. The invited lectures were devoted to different subjects, such as the dynamo effect, magnetoelectrolysis, instability problems, and metallurgical applications of MHD. The state of the art was discussed together with promising new orientations. This book should be of interest to researchers and advanced graduate students in physics and engineering sciences, working in MHD and related areas.
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacoustic waves, or quantum mechanical effects. This is the first of two volumes dealing with the subject.
This volume comprises the carefully revised papers of the 9th IUTAM Symposium on Laminar-Turbulent Transition, held at the Imperial College, London, UK, in September 2019. The papers focus on the leading research in understanding transition to turbulence, which is a challenging topic of fluid mechanics and arises in many modern technologies as well as in nature. The proceedings are of interest for researchers in fluid mechanics and industry who have to handle these types of problems, such as in the aeronautical sector.
This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book's primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.
Recent Advances in Computational Mechanics contains selected papers presented at the jubilee 20th Conference on Computer Methods in Mechanics (CMM 2013), which took place from 27 to 31 August 2013 at the Poznan University of Technology. The first Polish Conference on Computer Methods in Mechanics was held in Poznan in 1973. This very successful meeting initiated a series of conferences organized every two years by different Polish universities. Over the years the series gained an increasingly international character. The common general objective of the CMM conferences is to provide a forum for presentation and discussion of new ideas referring to the theoretical background and practical applications of computational mechanics. The program of each conference reflects current extensive research in this field of science. This proceedings volume addresses various aspects of computational mechanics, including advanced analysis of structures, modelling of material properties, damage mechanics, contact mechanics, biomechanics, heat transfer and coupled problems. This book will be of interest to students, researchers and practitioners in the fields of structural mechanics, mechanical engineering, material technology and biomechanics.
Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Including case studies that illustrate the approaches relevance to automotive applications, it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.
With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, this two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the study of environmental motions. It also offers critical discussions of environmental sustainability related to engineering. The handbook features 81 chapters written by 135 renowned researchers from around the world. Covering environmental, policy, biological, and chemical aspects, it tackles important cross-disciplinary topics such as sustainability, ecology, pollution, micrometeorology, and limnology. Volume One: Overview and Fundamentals provides a comprehensive overview of the fundamentals, including introductory topics, general principles, and fundamental flow types. It emphasizes the close relevance of environmental fluid dynamics research in society, public policy, infrastructure, quality of life, security, and the law. The book explores established and emerging areas related to environmental fluid dynamics. It also describes sub-mesoscale flow processes and phenomena that form the building blocks of environmental motions. Volume Two: Systems, Pollution, Modeling, and Measurements explores the interactions between engineered structures and natural flows. It also discusses the major topic of environmental pollution, with a focus on numerical methods, predictive modeling, and computer infrastructure developments. The book also looks at practical aspects of laboratory experiments and field observations that validate quantitative predictions and help identify new phenomena and processes. As communities face existential challenges posed by climate change, rapid urbanization, and scarcity of water and energy, the study of environmental fluid dynamics becomes increasingly relevant. This wide-ranging handbook is a valuable resource for students, researchers, and policymakers working to better understand natural motions and how they affect and are influenced by anthropogenic activities.
Pneumatic conveying is one of the most popular methods of handling bulk powdered and granular materials in mining, chemical and agricultural industries. This 3rd edition of this successful book covers both theoretical and practical aspects of the subject. It is unique in its blending of academic materials and good industrial design techniques. Each topic is covered in depth, with emphasis placed on the latest techniques, hardware systems and design and research methodology. Its comprehensive worked examples and table ensure that the reader need not consult any other reference material. In this 3rd edition new sections on simulation and modelling have been added, while the use of tomography as a tool for monitoring pneumatic conveying is also covered. |
You may like...
Know and Understand Centrifugal Pumps
L. Bachus, A. Custodio
Hardcover
R2,361
Discovery Miles 23 610
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
|