![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
This book highlights cutting-edge topics in contemporary physics, discussing exciting advances and new forms of thinking in evolving fields with emphases both on natural phenomena and applications to modern engineering. It provides material for thought and practice in nanophysics, plasma physics, and electrodynamics. Nanophysics and plasmas are synergic physical areas where the whole is more than the sum of the parts (quantum, atomic and molecular, electrodynamics, photonics, condensed matter, thermodynamics, transport phenomena). The authors emphasize both fundamentals and more complex concepts, making the contents accessible as well challenging. Nanoscale properties and physical phenomena are explained under the umbrella of quantum physics. Advances made in the physical knowledge of the nanoworld, and its metrology are addressed, along with experimental achievements which have furthered studies of extreme weak forces present at nano- or sub-micron scales. The book does not focus in detail on the diversity of applications in nanotechnology and instrumentation, considering that the reader already has basic prior knowledge on that. It also covers an introduction to plasma universe phenomenology, the basics of advanced mathematics applied to the electromagnetic field, longitudinal forces in the vacuum, concepts of helicity and topological torsion, SU(2) representation of Maxwell equations, 2D representation of the electromagnetic field, the use of the fractional derivative, and ergontropic dynamics. The chapters include theory, applications, bibliographic references, and solved exercises. The synergies of the book's topics demonstrate their potential in critical issues, such as relieving humans from barriers imposed by energetic and entropic dependencies and penetrating the realm of weak forces at the nanoscale. The book will boost both post-graduate students and mature scientists to implement new scientific and technological projects.
Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field.
With contributions from leading researchers in the field, and including recent breakthrough work, this collection of recent results on near wall turbulence includes theory, new experiments, DNS, and modeling with RANS, LES and Low Order Dynamical Systems.
Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. Suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion, this textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book, giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.
This text, written as an introduction to fluid mechanics for students of all engineering disciplines, emphasizes fluid flow phenomena and their modelling. The level of mathematics is kept at the minimum so that a student can pay full attention to the complexities of the fundamental physical concepts and develop a physical feel of the subject. Common misapplications, misunderstandings and over-generalizations made by students are anticipated and cautioned against. Relatively newer and simpler treatments have been used in several topics such as Euler acceleration formula, Reynolds transport theorem and Bernoulli equation, and a new unified treatment of modelling, similitude and the basis of approximations has been presented. A preview of fluid flow phenomena in Chapter 1 and an overview in the epilogue are included. A whole array of applications from diverse engineering disciplines has been introduced through numerous solved examples and over five hundred carefully graded problems. In this new edition, Chapter 9 on Similitude and Modelling has been re-written so as to make it easier to understand, and suggestions of several users have been incorporated.
- written by world leading experts in the field - contains many worked-out examples, taken from daily life fire related practical problems - covers the entire range from basics up to state-of-the-art computer simulations of fire and smoke related fluid mechanics aspects, including the effect of water - provides extensive treatment of the interaction of water sprays with a fire-driven flow - contains a chapter on CFD (Computational Fluid Dynamics), the increasingly popular calculation method in the field of fire safety science
This textbook is a pedagogic introduction to a number of phenomena employing fluid mechanics. Beginning with basic concepts and conservation laws for neutral and charged fluids, the authors apply and develop them to understand aerodynamics, locomotion of micro-organisms, waves in air and water, shock waves, hydrodynamic and hydromagnetic instabilities, stars and black holes, blood flow in humans, and superfluids. The approach is to consider various striking topics on fluid mechanics, without losing necessary mathematical rigor. The book balances the qualitative explanations with formal treatment, in a compact manner. A special focus is given to the important and difficult subject of turbulence and the book ends with a discussion on turbulence in quantum fluids. The textbook is dotted by a number of illustrative examples, mostly from real life, and exercises. The textbook is designed for a one semester course and addresses students at undergraduate and graduate level in physics or engineering, who want to research in the fields as diverse as aeronautics, meteorology, cosmology, biomechanics, and mathematical physics. It is requested knowledge of an undergraduate level course on mathematical methods to better understand the topics presented here.
Based on research into jets in supersonic crossflow carried out by the authors' team over the past 15 years, this book summarizes and presents many cutting-edge findings and analyses on this subject. It tackles the complicated mixing process of gas jets and atomization process of liquid jets in supersonic crossflow, and studies their physical mechanisms. Advanced experimental and numerical techniques are applied to further readers' understanding of atomization, mixing, and combustion of fuel jets in supersonic crossflow, which can promote superior fuel injection design in scramjet engines. The book offers a valuable reference guide for all researchers and engineers working on the design of scramjet engines, and will also benefit graduate students majoring in aeronautical and aerospace engineering.
Treating multiphase systems with emphasis on the aspect of fluid dynamics and as an introduction to research in multiphase flow, this book covers definitive concepts, methods, and theories which have been validated by experimental results. A textbook for college seniors and graduate students and a research reference, it is a coherent presentation that facilitates the understanding of physical interactions. The book's focus is fluid dynamics, with extension to other transport processes of heat and mass transfer, and chemical relations to illustrate applications of multiphase flow. The exercise problems at the end of each chapter assist the reader in formulating and solving physical problems and gaining a sense of magnitude of interacting effects and events. Extended details and corollaries are also included in these exercise problems. Some of the topics in the exercise problems may also be incorporated as topics for the lectures.
An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Drawing upon an extensive theoretical background and years of practical experience, the authors provide descriptions of applications, concepts, component design, analysis tools, performance maps, flow stability, and structural integrity, with illustrative examples. Features wide coverage of all types of radial compressor over many applications unified by the consistent use of dimensional analysis. Discusses the methods needed to analyse the performance, flow, and mechanical integrity that underpin the design of efficient centrifugal compressors with good flow range and stability. Includes explanation of the design of all radial compressor components, including inlet guide vanes, impellers, diffusers, volutes, return channels, de-swirl vanes and side-streams. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field and those just entering it.
The homogenization of single phase gases or liquids with chemical reactive components by mixing belongs to one of the oldest basic operations applied in chemical engineering. The design of equipment for mixing processes is still derived from measurements of the mixing time which is related to the applied methods of measurement and the special design of the test equipment itself. This book was stimulated by improved modern methods for experimental research and visualization, for simulations and numerical calculations of mixing and chemical reactions in micro and macro scale of time and local coordinates. It is aimed to improve the prediction of efficiencies and selectivities of chemical reactions in macroscopic scale. The results should give an understanding of the influence of the construction of different mixing equipment on to the momentum, heat and mass transfer as well as reaction processes running on microscopic scales of time and local coordinates. Newly developed methods of measurement are adjusted to the scales of the selected special transport and conversion processes. They allow a more detailed modeling of the mixing processes by the formulation of an appropriate set of momentum-, heat- and mass balance equations as well as boundary conditions in time and local coordinates together with constitutive equations and reaction kinetics equations as closure laws for numerical and analytical calculations. The latter were empirically derived in the past and therefore of limited reliability only. The improved and more detailed modeling leads to a major progress in predicting mixing processes on the different scales adjusted to transport and reaction processes in molecular, micro- and macro dimensions. As a consequence improved numerical calculations are performed on the basis of newly derived experimental, measurement and modeling methods which are the basis for the prediction of mixing time as well as conversion rates and selectivities of chemical reactions during the mixing process. The research efforts are focused onto the design of the technical equipment for flow mixing processes. Mixing is performed inside velocity fields leading to deformation gradients from free or wall induced boundary layers. The different kinds of process equipment are jet mixer, static mixer and mixing vessels equipped with rotating stirrers. Especially in micro mixing newly developed constructions are investigated permitting the scale up from laboratory to technical dimensions.
This book discusses instrumentation and experimental methods for obtaining detailed information on the structure of various types of flows as well as standard process flow instrumentation suitable for industrial control applications. It assists research-oriented and process engineering personnel.
This book results from the authors work done on simulation based optimization problems at the Department of Mathematics, University of Trier, and reported in his postdoctoral thesis ("Habilitationsschrift") accepted by the Faculty-IV of this University in 2008. The focus of the work has been to develop mathematical methods and algorithms which lead to efficient and high performance computational techniques to solve such optimization problems in real-life applications. Systematic development of the methods and algorithms are presented here. Practical aspects of implementations are discussed at each level as the complexity of the problems increase, supporting with enough number of computational examples. It consists of two parts: first part deals with time dependent optimization problems with applications in environmental engineering and the second part deals with steady state optimization problems, in which the PDEs are solved using semi-iterative or pseudo-time-stepping techniques, with applications in aerodynamics. This book will be useful for scientists and engineers who are looking for efficient numerical methods for PDE-constrained optimization problems. It will be helpful for graduate and Ph.D. students in applied mathematics, aerospace engineering, mechanical engineering, civil engineering and computational engineering during their training and research. This also will provide exciting research and development areas involving realistic applications.
Computational fluid dynamics (CFD), which involves using computers to simulate fluid flow, is emerging as a powerful approach for elucidating the palaeobiology of ancient organisms. Here, Imran A. Rahman describes its applications for studying fossil echinoderms. When properly configured, CFD simulations can be used to test functional hypotheses in extinct species, informing on aspects such as feeding and stability. They also show great promise for addressing ecological questions related to the interaction between organisms and their environment. CFD has the potential to become an important tool in echinoderm palaeobiology over the coming years.
Experimental Methods in Heat Transfer and Fluid Mechanics focuses on how to analyze and solve the classic heat transfer and fluid mechanics measurement problems in one book. This work serves the need of graduate students and researchers looking for advanced measurement techniques for thermal, flow, and heat transfer engineering applications. The text focuses on analyzing and solving classic heat transfer and fluid mechanics measurement problems, emphasizing fundamental principles, measurement techniques, data presentation, and uncertainty analysis. Overall, the text builds a strong and practical background for solving complex engineering heat transfer and fluid flow problems. Features Provides students with an understandable introduction to thermal-fluid measurement Covers heat transfer and fluid mechanics measurements from basic to advanced methods Explains and compares various thermal-fluid experimental and measurement techniques Uses a step-by-step approach to explaining key measurement principles Gives measurement procedures that readers can easily follow and apply in the lab
Cloud research is a rapidly developing branch of climate science that's vital to climate modelling. With new observational and simulation technologies our knowledge of clouds and their role in the warming climate is accelerating. This book provides a comprehensive overview of research on clouds and their role in our present and future climate, covering theoretical, observational, and modelling perspectives. Part I discusses clouds from three different perspectives: as particles, light and fluid. Part II describes our capability to model clouds, ranging from theoretical conceptual models to applied parameterised representations. Part III describes the interaction of clouds with the large-scale circulation in the tropics, mid-latitudes, and polar regions. Part IV describes how clouds are perturbed by aerosols, the land-surface, and global warming. Each chapter contains end-of-chapter exercises and further reading sections, making this an ideal resource for advanced students and researchers in climatology, atmospheric science, meteorology, and climate change.
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers' understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
This book presents sloshing with marine and land-based applications, with a focus on ship tanks. It also includes the nonlinear multimodal method developed by the authors and an introduction to computational fluid dynamics. Emphasis is also placed on rational and simplified methods, including several experimental results. Topics of special interest include antirolling tanks, linear sloshing, viscous wave loads, damping, and slamming. The book contains numerous illustrations, examples, and exercises.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.
This Brief concerns heat transfer and pressure drop in heat transfer enhancement for boiling and condensation. The authors divide their topic into six areas: abrasive treatment and coatings, combined structured and porous surfaces, basic principles of boiling mechanism, vapor space condensation, convective vaporization, and forced condensation inside tubes. Within this framework, the book examines range of specific phenomena including abrasive treatment, open grooves, 3D cavities, etched surfaces, electroplating, pierced 3D cover sheets, attached wire and screen promoters, non-wetting coatings, oxide and ceramic coatings, porous surfaces, structured surfaces (integral roughness), combined structured and porous surfaces, composite surfaces, single-tube pool boiling tests, theoretical fundamentals like liquid superheat, effect of cavity shape and contact angle on superheat, entrapment of vapor in cavities, nucleation at a surface cavity, effect of dissolved gases, bubble departure diameter, bubble dynamics, boiling hysteresis and orientation effects, basic principles of boiling mechanism, visualization and mechanism of boiling in subsurface tunnels, and Chien and Webb parametric boiling studies.
Computational Fluid Mechanics and Heat Transfer, Fourth Edition is a fully updated version of the classic text on finite-difference and finite-volume computational methods. Divided into two parts, the text covers essential concepts in the first part, and then moves on to fluids equations in the second. Designed as a valuable resource for practitioners and students, new examples and homework problems have been added to further enhance the student's understanding of the fundamentals and applications. Provides a thoroughly updated presentation of CFD and computational heat transfer Covers more material than other texts, organized for classroom instruction and self-study Presents a wide range of computation strategies for fluid flow and heat transfer Includes new sections on finite element methods, computational heat transfer, and multiphase flows Features a full Solutions Manual and Figure Slides for classroom projection Written as an introductory text for advanced undergraduates and first-year graduate students, the new edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.
In recent decades, great progress has been made in our understanding of zonal jets across many subjects - atmospheric science, oceanography, planetary science, geophysical fluid dynamics, plasma physics, magnetohydrodynamics, turbulence theory - but communication between researchers from different fields has been weak or non-existent. Even the terminology in different fields may be so disparate that researchers working on similar problems do not understand each other. This comprehensive, multidisciplinary volume will break cross-disciplinary barriers and aid the advancement of the subject. It presents a state-of-the-art summary of all relevant branches of the physics of zonal jets, from the leading experts. The phenomena and concepts are introduced at a level accessible to beginning graduate students and researchers from different fields. The book also includes a very extensive bibliography.
This book contains invited lectures and selected contributions presented at the Enzo Levi and XIX Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2013. It is aimed at fourth year undergraduate and graduate students, and scientists in the fields of physics, engineering and chemistry who are interested in fluid dynamics from an experimental and theoretical point of view. The invited lectures are introductory and avoid the use of complicated mathematics. The fluid dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and is suitable for both teaching and research.
The ninth edition of Thermodynamics and Heat Power contains a revised sequence of thermodynamics concepts including physical properties, processes, and energy systems, to enable the attainment of learning outcomes by Engineering and Engineering Technology students taking an introductory course in thermodynamics. Built around an easily understandable approach, this updated text focuses on thermodynamics fundamentals, and explores renewable energy generation, IC engines, power plants, HVAC, and applied heat transfer. Energy, heat, and work are examined in relation to thermodynamics cycles, and the effects of fluid properties on system performance are explained. Numerous step-by-step examples and problems make this text ideal for undergraduate students. This new edition: Introduces physics-based mathematical formulations and examples in a way that enables problem-solving. Contains extensive learning features within each chapter, and basic computational exercises for in-class and laboratory activities. Includes a straightforward review of applicable calculus concepts. Uses everyday examples to foster a better understanding of thermal science and engineering concepts. This book is suitable for undergraduate students in engineering and engineering technology. |
You may like...
The Bomber Mafia - A Story Set In War
Malcolm Gladwell
Paperback
(1)
|