![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
Knowledge of added body masses that interact with fluid is necessary in various research and applied tasks of hydro- and aeromechanics: steady and unsteady motion of rigid bodies, total vibration of bodies in fluid, local vibration of the external plating of different structures. This reference book contains data on added masses of ships and various ship and marine engineering structures. Also theoretical and experimental methods for determining added masses of these objects are described. A major part of the material is presented in the format of final formulas and plots which are ready for practical use. The book summarises all key material that was published in both Russian and English-language literature. This volume is intended for technical specialists of shipbuilding and related industries. The author is one of the leading Russian experts in the area of ship hydrodynamics.
A self-contained textbook, Microhydrodynamics and Complex Fluids deals with the main phenomena that occur in slow, inertialess viscous flows often encountered in various industrial, biophysical, and natural processes. It examines a wide range of situations, from flows in thin films, porous media, and narrow channels to flows around suspended particles. Each situation is illustrated with examples that can be solved analytically so that the main physical phenomena are clear. It also discusses a range of numerical modeling techniques. Two chapters deal with the flow of complex fluids, presented first with the formal analysis developed for the mechanics of suspensions and then with the phenomenological tools of non-Newtonian fluid mechanics. All concepts are presented simply, with no need for complex mathematical tools. End-of-chapter exercises and exam problems help you test yourself. Dominique Barthes-Biesel has taught this subject for over 15 years and is well known for her contributions to low Reynolds number hydrodynamics. Building on the basics of continuum mechanics, this book is ideal for graduate students specializing in chemical or mechanical engineering, material science, bioengineering, and physics of condensed matter.
This is a book about thermodynamics, not history, but it adopts a semi-historical approach in order to highlight different approaches to entropy. The book does not follow a rigid temporal order of events, nor it is meant to be comprehensive. It includes solved examples for a solid understanding. The division into chapters under the names of key players in the development of the field is not intended to separate these individual contributions entirely, but to highlight their different approaches to entropy. This structure helps to provide a different view-point from other text-books on entropy.
The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.
Explores the latest applications arising from the intersection of nanotechnology and microfluidics In the past two decades, microfluidics research has seen phenomenal growth, with many new and emerging applications in fields ranging from chemistry, physics, and biology to engineering. With the emergence of nanotechnology, microfluidics is currently undergoing dramatic changes, embracing the rising field of nanofluidics. This volume reviews the latest devices and applications stemming from the merging of nanotechnology with microfludics in such areas as drug discovery, bio-sensing, catalysis, electrophoresis, enzymatic reactions, and nanomaterial synthesis. Each of the ten chapters is written by a leading pioneer at the intersection of nanotechnology and microfluidics. Readers not only learn about new applications, but also discover which futuristic devices and applications are likely to be developed. Topics explored in this volume include: New lab-on-a-chip systems for drug delivery Integration of microfluidics with nanoneuroscience to study the nervous system at the single-cell level Recent applications of nanoparticles within microfluidic channels for electrochemical and optical affinity biosensing Novel microfluidic approaches for the synthesis of nanomaterials Next-generation alternative energy portable power devices References in each chapter guide readers to the primary literature for further investigation of individual topics. Overall, scientists, researchers, engineers, and students will not only gain a new perspective on what has been done, but also the nanotechnology tools they need to develop the next generation of microfluidic devices and applications. Microfluidic Devices for Nanotechnology is a two-volume publication, the first ever to explore the synergies between microfluidics and nanotechnology. The first volume covers fundamental concepts; this second volume examines applications.
This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.
This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.
This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observationsPresents the theory and experimental results for both thermodynamic and transport propertiesExamines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficientsCombines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensionsConducts an holistic examination of the material from more than 500 archival publications
Contains Fluid Flow Topics Relevant to Every Engineer Based on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches that clarify key concepts as well as the significance of their solutions, and fosters an understanding of the fundamentals encountered in engineering. Comprised of nine chapters, this book grapples with a number of relevant problems and asks two pertinent questions to extend understanding and appreciation: What should we look out for? and What else is interesting? This text can be used for exam preparation and addresses problems that include two-phase and multi-component flow, viscometry and the use of rheometers, non-Newtonian fluids, and applications of classical fluid flow principles. While the author incorporates terminology recognized by all students of engineering and provides a full understanding of the basics, the book is written for engineers who already have a rudimentary understanding and familiarity of fluid flow phenomena. It includes engineering concepts such as dimensionless numbers and requires a fluency in basic mathematical skills, such as differential calculus and the associated application of boundary conditions to reach solutions. Solved Practical Problems in Fluid Mechanics thoroughly explains the concepts and principles of fluid flow by highlighting various problems frequently encountered by engineers with accompanying solutions. This text can therefore help you gain a complete understanding of fluid mechanics and draw on your own practical experiences to tackle equally tricky problems.
Instrumentation, Measurements, and Experiments in Fluids, Second Edition is primarily focused on essentials required for experimentation in fluids, explaining basic principles, and addressing the tools and methods needed for advanced experimentation. It also provides insight into the vital topics and issues associated with the devices and instruments used for fluid mechanics and gas dynamics experiments. The second edition adds exercise problems with answers, along with PIV systems of flow visualization, water flow channel for flow visualization, and pictures with Schlieren and shadowgraph-from which possible quantitative information can be extracted. Ancillary materials include detailed solutions manual and lecture slides for the instructors.
As Computational Fluid Dynamics (CFD) and Computational Heat
Transfer (CHT) evolve and become increasingly important in standard
engineering design and analysis practice, users require a solid
understanding of mechanics and numerical methods to make optimal
use of available software. The Finite Element Method in Heat
Transfer and Fluid Dynamics, Third Edition illustrates what a user
must know to ensure the optimal application of computational
procedures?particularly the Finite Element Method (FEM)?to
important problems associated with heat conduction, incompressible
viscous flows, and convection heat transfer. This updated third edition features new or extended coverage of:
This volume showcases lecture notes collected from tutorials presented at the Workshop on Moving Interface Problems and Applications in Fluid Dynamics that was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences, National University of Singapore. As part of the program, these tutorials were conducted by specialists within their respective areas such as Robert Dillon, Zhilin Li, John Lowengrub, Frank Lu and Gretar Tryggvason.The topics in the program encompass modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications like biological treatments with experimental verification, multi-medium flow or multiphase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas.This volume benefits graduate students and researchers keen in the field of interfacial flows for application to physical and biological systems. Even beginners will find this volume a very useful starting point with many relevant references applicable.
Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid solid interface, and the basics of the finite element method. It continues with the ALE and space time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: * First book to address the state-of-the-art in computational FSI * Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems * Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space time methods, isogeometric analysis, and advanced FSI coupling methods * Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. * Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Since antiquity, humanity has used engineering techniques to manage the transport and distribution of its most important resource fresh water. Population growth and climate change are making the good management of water resources ever more essential and this book focuses on advanced methods for the control of water flow in open-channel systems. Open-channel hydraulics are described by hyperbolic equations, derived from laws of conservation of mass and momentum, called Saint-Venant equations. In conjunction with hydraulic structure equations these are used to represent the dynamic behavior of water flowing in rivers, irrigation canals, transportation waterways and sewers. A lot of water is wasted because of poor management of such systems and automatic control has long been identified as a possible way to improve their operational management. Building on a detailed analysis of open-channel flow modeling, Modeling and Control of Hydrosystems constructs control design methodologies based on a frequency domain approach. The difficulty involved with rigorous design of boundary controllers for hyperbolic systems is well known but, in practice, many open-channel systems are controlled with classical input output controllers that are usually poorly tuned. The approach of this book, fashioning pragmatic engineering solutions for the control of open channels is given rigorous mathematical justification. Once the control objectives are clarified, a generic control design method is proposed, first for a canal pool, and then for a whole canal. The methods developed in the book have been validated on several canals of various dimensions, from experimental laboratory canals to a large scale irrigation canal. From the detailed analysis of realistic open-channel flow dynamics, and moving to the design of effective controllers, Modeling and Control of Hydrosystems will be of interest to control and civil engineers, and also to academics from both fields.
In this concise yet comprehensive book, the author discusses the principles of mass, momentum, and energy transport, and derives balance equations for single-component fluids and multicomponent mixtures based on the direct application of natural laws and principles of thermodynamics. Transport equations over control volumes are formulated with reference to the Reynolds transport equation, thereby circumventing the need for ad-hoc balances for open systems that are best justified in hindsight. Notable features with regard to mass transport include the interpretation of diffusion in mixtures in terms of species parcel motion and separation, the introduction of Fick's and fractional diffusion laws with reference to random molecular excursions, a detailed account of species and mixture kinematics and dynamics, and the discussion of partial stresses, energies, and entropies of individual mixture components. Key features of this book include: * The governing equations are derived from first principles based on the application of natural laws and principles of thermodynamics * Balances over control volumes are derived from rigorous equations governing material parcel property evolution * Fick's law, a fractional diffusion law, and other diffusion laws are discussed with reference to random walks * A detailed account of species and mixture kinematics and dynamics is presented for binary and multicomponent solutions * A tabulated summary of transport equations is presented in differential and integral forms, and an overview of classical thermodynamics is given in an appendix for a self-contained discourse C. Pozrikidis has taught at the University of California and the University of Massachusetts. He is the author of several books on theoretical and computational topics in science and engineering, applied mathematics, scientific computing, and computer science.
The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows and the inside of the shock wave itself are also examined. Examples of specific non-equilibrium flows are given, generally corresponding to those encountered during spatial missions or in shock tube experiments.
Modeling of Extreme Waves in Technology and Nature is a two-volume set, comprising Evolution of Extreme Waves and Resonances (Volume I) and Extreme Waves and Shock-Excited Processes in Structures and Space Objects (Volume II). The theory of waves is generalized on cases of extreme waves. The formation and propagation of extreme waves of various physical and mechanical nature (surface, elastoplastic, fracture, thermal, evaporation) in liquid and solid media, and in structural elements contacting with bubbly and cryogenic liquids are considered analytically and numerically. The occurrence of tsunamis, giant ocean waves, turbulence, and different particle-waves is described as resonant natural phenomena. Nonstationary and periodic waves are considered using models of continuum. The change in the state of matter is taken into account using wide-range determining equations. The desire for the simplest and at the same time general description of extreme wave phenomena that takes the reader to the latest achievements of science is the main thing that characterizes this book and is revolutionary for wave theory. A description of a huge number of observations, experimental data, and calculations is also given.
This book comprises selected peer-reviewed proceedings of the International Conference on Applications of Fluid Dynamics (ICAFD 2018) organized by the School of Advanced Sciences, Vellore Institute of Technology, India, in association with the University of Botswana and the Society for Industrial and Applied Mathematics (SIAM), USA. With an aim to identify the existing challenges in the area of applied mathematics and mechanics, the book emphasizes the importance of establishing new methods and algorithms to address these challenges. The topics covered include diverse applications of fluid dynamics in aerospace dynamics and propulsion, atmospheric sciences, compressible flow, environmental fluid dynamics, control structures, viscoelasticity and mechanics of composites. Given the contents, the book is a useful resource for students, researchers as well as practitioners.
The theory of waves is generalized on cases of strongly nonlinear waves, multivalued waves, and particle-waves. The appearance of these waves in various continuous media and physical fields is explained by resonances and nonlinearity effects. Extreme waves emerging in different artificial and natural systems from atom scale to the Universe are explored. Vast amounts of experimental data and comparisons of them with the results of the developed theory are presented. The book was written for graduate students as well as for researchers and engineers in the fields of geophysics, nonlinear wave studies, cosmology, physical oceanography, and ocean and coastal engineering. It is designed as a professional reference for those working in the wave analysis and modeling fields.
Requiring only an introductory background in continuum mechanics, including thermodynamics, fluid mechanics, and solid mechanics, Biofluid Dynamics: Principles and Selected Applications contains review, methodology, and application chapters to build a solid understanding of medical implants and devices. For additional assistance, it includes a glossary of biological terms, many figures illustrating theoretical concepts, numerous solved sample problems, and mathematical appendices. The text is geared toward seniors and first-year graduate students in engineering and physics as well as professionals in medicine and medical implant/device industries. It can be used as a primary selection for a comprehensive course or for a two-course sequence. The book has two main parts: theory, comprising the first two chapters; and applications, constituting the remainder of the book. Specifically, the author reviews the fundamentals of physical and related biological transport phenomena, such as mass, momentum, and heat transfer in biomedical systems, and highlights complementary topics such as two-phase flow, biomechanics, and fluid-structure interaction. Two appendices summarize needed elements of engineering mathematics and CFD software applications, and these are also found in the fifth chapter. The application part, in form of project analyses, focuses on the cardiovascular system with common arterial diseases, organ systems, targeted drug delivery, and stent-graft implants. Armed with Biofluid Dynamics, students will be ready to solve basic biofluids-related problems, gain new physical insight, and analyze biofluid dynamics aspects of biomedical systems.
This book contains a collection of the main contributions from the third edition of the NICFD conference, organized by the Special Interest Group on Non-Ideal Compressible Fluid Dynamics (SIG-49). It provides insight on the latest research findings in the field of NICFD that are relevant to a number of engineering applications related to the conversion of renewable and waste energy sources, like organic Rankine cycles, supercritical CO2 cycle power plants, combustors operating with supercritical fluids, and heat pumps. The various chapters of the book document research encompassing theoretical, computational, and experimental aspects of the gas dynamics of non-ideal reactive and non-reactive flows and their impact for the design of internal flow components (turbomachinery, heat exchangers, combustors). Since the accurate calculation of fluid thermo-physical properties is of great concern in NICFD, all the chapters address this problem by describing state-of-the-art models for the characterization of the properties of pure fluids and mixtures.
An unsurpassed treatise on the state-of-the-science in the research and design of spillways and energy dissipators, Hydraulics of Spillways and Energy Dissipators compiles a vast amount of information and advancements from recent conferences and congresses devoted to the subject. It highlights developments in theory and practice and emphasizing topics related to scale effect, dynamic flow measurement, and the analysis and interpretation of model results. Consolidates and compares the available information on various design approaches, procedures, and structure types to benefit practicing engineers. Reflecting the author's nearly four decades of experience in the field, this handbook Provides four broad sections on spillway design, flood- estimation and selection, various types of spillways and energy dissipators, and topics of special interest Offers valuable case studies and illustrative examples to effectively highlight key topics in the text Includes chapters on crucial design elements such as cavitation, air entrainment, and aerators Contains extensive discussions of spillway construction stages, dual purpose spillways, overtopping protection of earth dams used as spillways, unlined spillways, fuse plugs and fuse gate spillways, air entrainment and forced aeration, and protection against detrimental forces such as cavitation, uplift, and scour About the Author: RAJNIKANT M. KHATSURIA served as Additional Director, Central Water and Power Research Station, Pune, India, until his retirement in 2001. He joined the Central Water and Power Research Station in 1963 and was engaged in the research and design of hydraulic structures, based on hydraulic model studies. His special interests include spillways, energy dissipators, control and conveyance structures, and hydropower structures. He has completed nearly 150 projects pertaining to the above disciplines and has authored a number of technical papers and professional reports. He contributed towards the field standardization of overflow, non-overflow, and hydropower structures. He also served as the Senior Expert for WAPCOS (India) Ltd. (1989-90) for the planning and commissioning of the HLAB (hydraulics laboratory) at Al Taji, Baghdad, Iraq. He received the B.E. (1963) degree from Gujarat University, India, the M.E. (1975) degree from the University of Pune, India, and the M.S. (1981) degree from the University of Iowa, Iowa City.
|
You may like...
|