![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
This book has its origin in a proposal made a few years ago that I should collaborate with Dr H. J. Stern in the production of a third edition of his well-known text-book entitled Rubber: Natural and Synthetic. The sugges tion was that I should contribute a series of chapters on synthetic rubbers. Although, in the event, it has not proved possible to publish the full book in the form originally planned, it was apparent that, with some restructuring, the material which I had collected would be valuable as an independent summary of the chemistry and technology of synthetic rubbers. It is in this form that the material is now offered. The primary purpose of this book is to provide a brief up-to-date survey of the principal types of synthetic rubber which have been and are currently available. Two classes of material are included which are regarded by some as being thermoplastics rather than rubbers, namely, plasticised polyvinyl chloride and the thermoplastic synthetic rubbers. The topics which are covered for each main family of synthetic rubbers are (i) the sources of the monomers, (ii) polymerisation procedures and the effects of important polymerisation variables upon the rubber produced, (iii) the types of rubber currently available commercially, (iv) interesting aspects of the compounding of the rubbers, with special reference to such matters as vulcanisation, reinforcement, protection against degradation, and (where appropriate) plasticisation, and (v) an indication of applications."
IUTAM-IAHR Symposium on Ice-Structure Interaction Professor Bez Tabarrok, Chairman of the Canadian National Committee (CNC) of the International Union of Theoretical and Applied Mechanics (IUTAM) invited Professor Derek Muggeridge to organize a symposium on ice structure interaction. Dr. Muggeridge readily agreed and prepared a proposal that was endorsed by the CNC and presented to the General Assembly Meeting of IUTAM for their consideration. This Assembly gave its approval and provided the local organizing committee with the names of individuals who were willing to serve on the Scientific Committee. Dr. Muggeridge became chairman of this committee and Dr. Ian Jordaan became co-chairman of this committee as well as chairman of the local organizing committee. The symposium followed the very successful previous meeting, chaired by Professor P. Tryde in Copenhagen, by ten years. Both symposia uti lized Springer-Verlag to publish their proceedings. The Faculty of En gineering and Applied Science at Memorial University of Newfoundland were particul{lXly pleased to host this prestigious symposium as it marked the twentieth anniversary of its Ocean Engineering Research Centre."
This Proceedings is a collection of papers presented at the Third Annual Conference on Superconductivity and Applications organized by the New York State Institute on Superconductivity. This year the Conference was held at the Buffalo Hilton Hotel on September 19- 21, 1989, with previous meetings on September 28-29,1987, and April 18-20, 1988. As in previous years, this meeting was highly successful, with an attendance of over three hundred researchers participating in lively scientific exchanges and discussions. The high quality of the talks is evident in this Proceedings. The field of high temperature superconductivity has matured considerably since its early days of media frenzy and rapid new discoveries. However, the enthusiasm and pace of research have not slowed down. A much better picture of the nature of high temperature superconductivity, the properties of these new materials and where they may find their eventual use has emerged. Processing techniques, especially thin film deposition, have been perfected nearly to the point of allowing commercial applications. We expect continued phenomenal growth of the field of high temperature superconductivity, both in terms of research and applications for many years to come.
''A must for anyone interested in metal-containing polymers and all its aspects.'' ---American Scientist ''Nicely organized...well-written....An excellent shapshot of the current state of this field.'' ---MRS Bulletin, July 1998
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: * Magnetic chains or layers (thin-film technology). * Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). * I-d or 2-d conductors and superconductors. * Intercalated systems. * 2-d electron gases (electrons on helium, semiconductor interfaces). * Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). * Superfluid films of ~He or 'He. * Polymer physics. * Organic and inorganic chain conductors, superionic conductors. * I-d or 2-d molecular crystals and liquid crystals. * I-d or 2-d ferro- and antiferro electrics.
The use of computer-based image analysis systems for all kinds of images, but especially for microscope images, has become increasingly widespread in recent years, as computer power has increased and costs have dropped. Software to perform each of the various tasks described in this book exists now, and without doubt additional algorithms to accomplish these same things more efficiently, and to perform new kinds of image processing, feature discrimination and measurement, will continue to be developed. This is likely to be true particularly in the field of three-dimensional imaging, since new microscopy methods are beginning to be used which can produce such data. It is not the intent of this book to train programmers who will assemble their own computer systems and write their own programs. Most users require only the barest of knowledge about how to use the computer, but the greater their understanding of the various image analysis operations which are possible, their advantages and limitations, the greater the likelihood of success in their application. Likewise, the book assumes little in the way of a mathematical background, but the researcher with a secure knowledge of appropriate statistical tests will find it easier to put some of these methods into real use, and have confidence in the results, than one who has less background and experience. Supplementary texts and courses in statistics, microscopy, and specimen preparation are recommended as necessary.
The 35th Annual Denver Conference on Applications of X-Ray Analysis was held August 4-8, 1986, on the campus of the University of Denver. Since the previous year's conference had emphasized x-ray diffraction, this year the Plenary Session spotlighted x-ray fluorescence, with the title "Trends in XRF: A World Perspective," featuring renowned speakers from three major areas. XRF IN NORTH AMERICA, by Prof. D. E. Leydon, from Colorado State University, dealt specifically with developments in the fields of instrumentation, data treatment and applications in that part of the world. Prof. H. Ebel, from the Technical University of Vienna, discussed XRF IN EUROPE, concentrating on subjects including total reflection, improved fundamental parameters, quantitation without standards and imaging techniques. Tomoya Arai, of the Rigaku Industrial Corporation in Japan, in considering XRF IN THE FAR EAST, described the scientific activity in XRF and the applications thereof, primarily in Japan and China. These plenary lectures were interspersed with short discussions of PERSONAL OBSERVATIONS on the subject by the co-chairmen of the SeSSion, Ron Jenkins and myself. The intent of this session was to bring the audience up-to-date on the status of the field in various parts of the world, and to give some feeling concerning where it is likely to go in the immediate future. Hopefully, the publication of the written versions of those presentations in this volume will make the authors' thoughts available to many who could not be present at the conference.
During the last thirty years profound developments in expe- rimental techniques to measure high temperature and pressu- res and thermodynamic properties of minerals have occurred. This technical development has been matched by an increased sophistication in applying theoretical methods to obtain new data or improve the quality of existing data. Using these newtechniques, Assessed Thermodynamic Data on Oxides and Silicates represents the successful attempt of the authors to develop an internally systematized data base which satis- fies the constraints of calorimetric measurements, phase equilibrium data, measured thermophysical properties of a phase, and heat capacities and entropies estimated from lat- tice vibrational models.
tions is not possible without first putting the problem into a wider con text. Consequently, before proceeding with detailed critical topical cov erage of individual biomass energy sources, uses, and effects, I will extend this preface with a few pages of rather personal reflections (I will use the same device in closing the book: after providing concise topical summaries in Chapter 8, I will conclude with some essayistic musings on renewable energetics, plants, people, and a scientist's responsibility). Interest in biomass energies is just a part of a broader global trend toward renewable energetics, a trend which has evolved speedily after the crude oil price escalation started in 1973. Yet one must be reminded that for the rich countries fossil fuels are, and for a long period shall remain, the foundation of an affluent civilization, while throughout the poor world the reliance of most people on biomass energies for everyday subsistence has brought many damaging environmental and social ef fects; that the reality of sharp price rises for crude oil (actually not so sharp once adjusted for inflation) should not be misconstrued as an "energy crisis"; that the rise of renew abies and the claims made on their behalf by countless enthusiasts look so much better on paper than in reality; and that the potential of biomass energies, an essential ingre dient of renewable scenarios, has been judged more with proselytizing zeal than with critical detachment."
The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci ety of Japan. The symposium was financially supported by the four orga nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by similar, but sometimes more sophisticated, concepts and tactics. An emphasis was laid on those universal aspects of the laws governing the ordering processes which transcended the detailed differences among the substances used. The 71 lectures reproduced in this volume bear witness to the success of the Symposium in meeting amply the first objective and, to a lesser extent, the second."
Over the last few years there has been increasing need for systematic and straregically designed experiments of surface morphology evolution resulting form ion bombardment induced sputtering. Although there is an impressive number of investi gations {1} concerned with semiconductor materials as a result of immediate applications, the most systematic investigations have been conducted with fcc metals with particular interest on single crystal Cu {2,3}. Evidence now exists that within certain para meters (i. e ion species (Ar+), ion energy (20-44 KeV), substrate 2 temperature (80-550 Degrees K), dose rate (100-500 gA cm- ) , residual x 5 9 pressure (5 10- to 5x10- mm Hg) and polar and azimuthal angle of ion incidence {4} reproducible surface morphology (etch pits and pyramids) is achieved on the (11 3 1) specific crystallographic orientation. The temporal development of individual surface features was alsoobserved in this laterstudy {4}, by employing an in situ ion source in the scanning electron microscope at Salford, a technique also empolyed in studies of the influence of polar angle of ion incidence {5} and surface contaminants {6} on the topographyof Ar+ bombarded Si. Studies have also been made on the variation of incident ion species with the (11 3 1) Cu surface and it was fully recognized {7} that residual surface contaminants when present could playa major role in dictating the morhological evolution.
Thirty years ago, the sharp development of the nuclear phy- SlCS has given scope to some connected areas such as radiochemis try, radiobiology, radioprotection, radiation damages. In this last subject - damages induced by radiations in mate rials, the earlier studies are essentially connected to the me chanism of defect creation. Several workers, for instance, SEITZ (1949), DIENES and VINEYARD (1957), BILLINGTON and CRAWFORD (1961) have developed the first approach in the damage processes theories. In the 65th years a "saturation effect" occurs in the studies of the mechanisms and correlatively a strong development appears in the physics of the defect itself. If it is possible in many cases to study defects without a good ~nowledge of their origin many researchs, in particular in the field of defects induced by energetic heavy ions, needs a better understanding of the damage processes. The track phenomena for instance is of special interest in heavy ions problems, cosmic ray tracks in lunar and meteorite crystals or glasses are a good indicator of the solar activity. On the other hand, color centers, induced by energetic heavy ions in alkali-halides crystals, shown a quite different behaviour than those created by light particles, it is necessary to assume that the ionic bombardement creates centers in a well located re gion : a core around the path of the incident particle.
The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination. This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of disciplines and materials stretching from archeometry to zeolites. As such, it is a comprehensive and valuable resource for those wishing to gain an understanding of the broad applicability of these two rapidly developing fields.
This book represents the work presented at a NATO Advanced Research Workshop on "Metallization and Metal-Semiconductor Interfaces", held at the Technical University of Munich, Garching, W. Germany from 22-26 August 1988. The major focus of the workshop was to evaluate critically the progress made in the area of metal-semiconductor interfaces. The underlying theme was the mechanism of Schottky barrier formation and a serious as sessment of the various models. A significant fraction of the workshop time was also spent in discussing the interaction of alkali metals with semiconductors. Alkali metals on semi conductors form ordered overlayers and the resulting system often exhibits one-dimensional metallic properties. The nature of their interaction has introduced new and exciting com plexities and this was pursued at length during the lively discussions at the workshop. A half a day was devoted to Scanning Tunneling Microscopy, the emphasis being on its utility in providing structural and electronic character of low-coverage regime. The book should pro vide readers with the most current status of the research activity in the general area of metal-semiconductor interfaces at an international level. It should also serve as an excellent introduction to the field, since sufficient review type of material has also been included The workshop organizers, Dr. I. P. Batra (Director), mM Almaden Research Center, San Jose, Prof. S. Ciraci, Bilkent University, Ankara, Prof. C. Y. Pong, University of California, Davis, Prof. Dr. F. Koch (Local Chairman), Technical University Munich, Garching, Dr. H.
The 4th International Symposium on the Science and Technology of Sintering was held on 4-6 November 1987 in Tokyo. Among the many technical sessions was one entitled 'Session for Sintering-Case Study'. Over 200 participants heard these invited talks. Although some papers were over 20 years old, it is necessary to understand the authors' way of thinking. Since the end of the Second World War, many excellent papers related to sintering have appeared in many different academic journals. Some of these papers are still of value, and are still being read by today's students. The questions we have to ask are: Why does the scholar think this way? Why did the scholar perform his experiments? What is the mechanism of sintering? What is the liquid phase of sintering? What is the behavior of sintering additives? What is the history and development of sintering theory? This book includes these sort of historical papers and also new original papers on sintering, all of which are very important to our understanding of the subject. Several papers have been added for this English edition, which is thus more comprehensive than its Japanese counterpart. These papers were spread out in many different sources and the benefits of collecting them together in book form is obvious.
The turbine has many advantages over other prime movers for producing power. The first turbine used water as the working fluid and this principle is still used in hydro-electric power generation. The steam turbine was developed late in the nineteenth century and was first applied to marine propulsion by Parsons in 1897. Since that time it has become the most widely used prime mover in electricity generation and marine propulsion. The equipment required to generate steam is bulky however and it was realised that much more compact power plant could be designed if the hot gases used for steam generation could drive the turbine directly. Early attempts to produce gas turbines were unsuccessful for several reasons, one major problem being that materials with the capability of operating at sufficiently high stresses and temperatures were not available. Following the first experimental Whittle engine in 1937, the emphasis on the development of the gas turbine engine for aircraft propulsion during World War II changed this situation dramatically. Gas turbine powered civil aircraft entered airline service in the early 1950s and gas turbines also began to compete successfully in other fields. Apart from the aircraft market, they have been used widely in pumping sets for oil and gas transmission pipelines and peak load electricity generation. Use in warship propulsion is increasing and there is currently major activity, in the USA in particular, in developments for vehicular propulsion.
Optical data storage represents a major chapter in the history of information storage and the invention of rewritable media has indisputably been an essential addition to the optical storage family. With the multiple overwrite feature, rewritable optical discs have found application in consumer DVD+RW video recorders, professional archiving systems and computer drives for data storage, replacing the floppy disc in the latter case. Optical Data Storage provides an overview of the recording principles, materials aspects, and application areas of phase-change optical storage. Some theoretical background is given to familiarize the reader with the basics of the phase-change processes. Elements of data recording, including mark formation, eraseability, direct overwrite strategies, data quality and data stability, etc are explained and extensively discussed. A mark formation model is described and used throughout the whole book to back-up measurement results and support the discussed applications. Two major aspects high-speed and dual-layer recording are considered in depth and solutions to achieve higher performance are analyzed. Optical Data Storage is aimed at a broad range of readers from university teams studying the subject to industrial media manufacturers requiring insights into performance of rewritable optical media."
The papers contained herein were presented at the Third International Conference on Composite Structures (ICCS/3) held at Paisley College of Technology, Paisley, Scotland, in September 1985. The Conference was organised and sponsored by Paisley College of Technology. It was co sponsored by the Scottish Development Agency, the National Engineering Laboratory, the USAF European Office of Aerospace Research and Development, and the US Army Research, Development and Standard isation Group-UK. It forms a natural and ongoing progression from the highly successful First and Second International Conferences on Composite Structures (ICCS/l and ICCS/2) held at Paisley in 1981 and 1983, respectively. To label composites as rather specialised, sophisticated, space-age structural materials would be to underestimate greatly their wider industrial potential. It is unquestionably true that they will play an increasingly dominant, if not decisive, role in aerospace engineering. Indeed a future aircraft industry without composites as the prime structural materials is inconceivable. However, in an energy-conscious world the high specific weights and stiffnesses of composites make them an attractive proposition in every sphere of transportation engineering. This fact is soundly underlined in one of the Plenary papers contained herein and in one of the sessions devoted to this subject. I t would also be a considerable mistake to interpret composites as simply lightweight alternatives to conventional metallic structural materials."
When asked to start teaching a course on engineering fracture mechanics, I realized that a concise textbook, giving a general oversight of the field, did not exist. The explanation is undoubtedly that the subject is still in a stage of early development, and that the methodologies have still a very limited applicability. It is not possible to give rules for general application of fracture mechanics concepts. Yet our comprehension of cracking and fracture beha viour of materials and structures is steadily increasing. Further developments may be expected in the not too distant future, enabling useful prediction of fracture safety and fracture characteristics on the basis of advanced fracture mechanics procedures. The user of such advanced procedures m\lst have a general understanding of the elementary concepts, which are provided by this volume. Emphasis was placed on the practical application of fracture mechanics, but it was aimed to treat the subject in a way that may interest both metallurgists and engineers. For the latter, some general knowledge of fracture mechanisms and fracture criteria is indispensable for an apprecia tion of the limita tions of fracture mechanics. Therefore a general discussion is provided on fracture mechanisms, fracture criteria, and other metal lurgical aspects, without going into much detail. Numerous references are provided to enable a more detailed study of these subjects which are still in a stage of speculative treatment."
Modulated Structure Materials arise in two basic ways. One is through the natural tendency that certain materials have to develoo stable modulations. Tynical examples of this catenory are the lonn oeriod superlattices, the spinodal alloys and other ordered structures. Another way to introduce nodulation into a basic is throuqh our own intervention, that is ~v artificial structure techninues. Such examples as the conposition nodulated films and the seniconductor superlattices have recently received apnreciable attention not only for their noble and unusual nrooerties but also for their practical applications in hiqh technolony areas. The NATO Advanced Study Institute on Modulated Structure ~'laterials which was held June 15-25, 1983 in t1alene-Chania, Greece, aimed at brinninq tonether international authorities and active researchers to discuss in-depth current knowledne and new develop- ments in both natural and artificial modulated structure materials. Up to this time, the Editor has received indications that the Institute served well its purpose. The fifteen carefully selected invited speakers qave outstandinq lectures on all aspects of modulated structures. The lectures were followed by extensive and lively discussions amonq all participants. It should be noted that on two occasions discussion panels were formed to address some of the fundamental aspects of modulated structures in view of the imnressive result~ of advanced experimental techniaues (lattice ann structure imaqinq techniaues in hinh resolution electron microscoP"; X-ray and neutron diffraction Methods, etc.
In the early 1950s it was proposed that the cationic centers of carboniun ions in the usual solvolytic media could diminish their electron deficiency by interacting with the
During the last decade there has been an increasing interest in clusters and small particles because of the peculiar proper ties induced by their large area to volume ratio. For that reason small particles are often considered as an intermediate state of matter at the border between atomic (or molecular) chemistry, and physics of the condensed matter. The importance of the surface effect can explain the anomalous properties, for example the exis tence of the five fold symmetry observed in different circumstan ces '(beams of rare gas clusters, gold particles deposited on a substrate). However the question of the critical size at which the transition to bulk properties occurs cannot be simply answered, since the reply depends on the peculiar property which is studied. The importance of the size effect was emphasized in the last International Meetings. However the situation remains confused in most cases since the exact role of the cluster environment cannot be clearly elucidated and is a main difficulty, except in cluster beam experiments. In fact ideally free clusters constitute a labo ratory exception. In most applications small particles must be supported on a surface or embedded in a matrix, in order to be stabilized, which obviously shows the role of the environment."
"SCIENCE AND TECHNOLOGY OF ' HE UNDEROLED MELT" This title was chosen as the topical headline of the Advanced Research Workshop (ARW) from March 17 to 22 1985, held at the Castle of Theuern. The usual term "Rapid Solidification" is an overlapping description. Due to the fact that nucleation is so eminently important for the undercooling of a melt and this, in turn, is an important characteristic of rapid solidifi cation, undercooling plays an essential role in "rapid solidification." The undercooled melt has caused an "accelerated evolution" (if not a revolution) in materials science during the last decade. Several rather exciting concepts with interesting potential for novel applications are being pursued presently in various laboratories and companies. They concern not only new processes and ha ware developments, but also present chal lenging perspectives for ventures, including the founding of new companies; or they promise growth possibilities with established larger and smaller industrial establishments."
Both experimental and theoretical investigations make it clear that mesoscale materials, that is, materials at scales intermediate between atomic and bulk matter, do not always behave in ways predicted by conventional theories of shock compression. At these scales, shock waves interact with local material properties and microstructure to produce a hierarchy of dissipative structures such as inelastic deformation fields, randomly distributed lattice defects, and residual stresses. A macroscopically steady planar shock wave is neither plane nor steady at the mesoscale. The chapters in this book examine the assumptions underlying our understanding of shock phenomena and present new measurements, calculations, and theories that challenge these assumptions. They address such questions as: - What are the experimental data on mesoscale effects of shocks, and what are the implications? - Can one formulate new mesoscale theories of shock dynamics? - How would new mesoscale theories affect our understanding of shock-induced phase transitions or fracture? - What new computational models will be needed for investigating mesoscale shocks?
valuable suggestions and constant help during the writing of the book, to Professor P. V. Gel'd for reading the manuscript and mak- ing valuable comments, and also to her colleagues in the Labora- tory for the Technology of Inorganic Compounds in the Institute for Problems in Materials Science of the Academy of Sciences of the Ukrainian SSR, in particular, to G. N. Makarenko, V. B. Fedorus, o. F. Kvas, and A. V. Tkachenko for assistance in planning the book and reading the manuscript. Contents Chapter I The Structure and Physi- chemical Properties of Carbides. . 1 Structures --. . . . . . . . . . . . . . -. -. . --. 1 Thermodynamic and thermophysical properties 22 Electrophysical and magnetic properties . . . . 30 Physicomechanical properties - . . - - . . . . . . 38 Chemical properties . . . . . . ---. . . --. -- 41 Chapter II Methods of Producing Carbides. . . 51 Chapter ITI Carbides of Metals of Group I -. . - 61 Carbides of the alkali metals . . . - . . - . - . . - 61 Carbides of metals of the copper subgroup. - - 66 |
You may like...
Measuring Nothing, Repeatedly - Null…
Allan Franklin, Ronald Laymon
Paperback
R758
Discovery Miles 7 580
Adaptive Control, Filtering, and Signal…
K.J. Astroem, G.C. Goodwin, …
Hardcover
R4,235
Discovery Miles 42 350
The Chemical and Pharmaceutical Industry…
G Festel, A Kreimeyer, …
Hardcover
R1,572
Discovery Miles 15 720
Cloud Computing & Virtualization
R Rajeswara Rao, V Subba Ramaiah
Hardcover
Intelligent Analysis of Multimedia…
Siddhartha Bhattacharyya, Hrishikesh Bhaumik, …
Hardcover
R5,617
Discovery Miles 56 170
|