![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
The need for reliable data on thermophysical and thermal optical properties of solid materials grows continually and increasingly. Existing property data, except for selected pure elements and for some simple alloys and compounds, are often not reliable, so in many cases the need for correct and acceptably accurate information can only be met through the measurement of a given property. The measurement-that is, the selection of the measurement method, building or purchase of the apparatus, and the measurement procedure itself carries many hidden hazards because methods and their variants are numerous and not appropriate for all materials and temperature ranges, and have many subtle sources of systematic errors, known only to those who have thoroughly studied them. The need for a concise yet complete reference work describing thermo physical and thermal optical property measurement techniques, and ultimately, reliable and detailed directions for property measurement discussed at the Sixth European Thermophysical Properties Conference in Dubrovnik, Yugoslavia in 1978, led its International Organizing Committee to launch an international cooperative project with these objectives. This reference work, the Compendium of Thermophysical Property Measurement Methods, is the result of the first phase of work on this program. It is a summary of the state-of-the-art methods for the measurement of thermal and electrical conductivity, thermal diffusivity, specific heat, thermal expansion, and thermal radiative properties of solid materials, from room temperature to very high temperatures."
The idea of a NATO Science Committee Institute on "Materials for Advanced Batteries" was suggested to JB and DWM by Dr. A. G. Chynoweth. His idea was to bring together experts in the field over the entire spectrum of pure research to applied research in order to familiarize everyone with potentially interesting new systems and the problems involved in their development. Dr. M. C. B. Hotz and Professor M. N. Ozdas were instrumental in helping organize this meeting as a NATO Advanced Science Institute. An organlzlng committee consisting of the three of us along with W. A. Adams, U. v Alpen, J. Casey and J. Rouxel organized the program. The program consisted of plenary talks and poster papers which are included in this volume. Nearly half the time of the conference was spent in study groups. The aim of these groups was to assess the status of several key aspects of batteries and prospects for research opportunities in each. The study groups and their chairmen were: Current status and new systems J. Broadhead High temperature systems W. A. Adams Interface problems B. C. H. Steele Electrolytes U. v Alpen Electrode materials J. Rouxel These discussions are summarized in this volume. We and all the conference participants are most grateful to Professor J. Rouxel for suggesting the Aussois conference site, and to both he and Dr. M. Armand for handling local arrangements.
The third International Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston, Massachusetts, on November 17-20, 1980, as part of the Annual Meeting of the Materials Research Society. The purpose of this Symposium was to provide an interdisciplinary forum for the discussion of scientific research dealing with all levels and types of radioactive wastes and their management. Since its inception in 1978, this annual Symposium has provided a unique opportunity for scientists of widely differing backgrounds to share in such discussions. The proceedings of the first two meetings were published as Volumes 1 and 2 in this series. The fourth Symposium is scheduled to be held in the autumn of 1981. The efforts of many people went into making this meeting a success. The scope of the 1980 Symposium was guided by the follow ing Steering Committee: K. J. Notz (Chairman), Oak Ridge National Laboratory, USA G. H. Daly, Department of Energy, USA D. E. Ferguson, Oak Ridge National Laboratory, USA R. H. Flowers, Atomic Energy Research Establishment, UK F. Girardi, Ispra Establishment, Italy T. Ishihara, Radioactive Waste Management Center, Japan R. W. Lynch, Sandia Laboratories, USA S. A. Mayman, Atomic Energy of Canada Ltd., Canada G. J. McCarthy, North Dakota State University, USA E. Merz, Kernforschunganlage Jillich, FRG L. Nilsson, KBS Project, Sweden D. M. Rohrer, Nuclear Regulatory Commission, USA R. Roy, Pennsylvania State University, USA T. "E. Scott, Ames Laboratory, USA C."
The title of this volume implies a progression of sorts from species of molecular size to a product described on the basis of continuum prop erties. The difference in approach from the standpoint of molecular be havior, on the one hand-more the forte of chemists-and from the standpoint of large-scale properties, on the other-more the province of chemical engineers and materials scientists-represents a severe cultural divide, but one with much potential for creative input from both sides. Chapter 1 of this volume attempts a broad survey of trends toward the synthesis of large, well-defined molecular systems with interesting physical, chemical, or material properties. Review articles with more de tailed treatments are emphasized. In Chapter 2, Newkome and Moore field summarize work on synthesis of /I cascade" molecules. Next, Denti, Campagna, and Balzani describe the synthesis of assemblies with con nected metal-containing chromophore units which transmit electrons or electronic energy in defined ways. In Chapter 4 Wuest describes the con struction of hydrogen-bonded organic networks, and in Chapter 5 Michl defines a molecular-level construction set. Finally, Jaszczak points out how nature's attempts over geological time spans are emulated by recent human synthetic activity in the fullerene arena, through the appearance of various morphologies of natural graphite. The book concludes with a method for describing fractal-like mole cules, and an index based on the method for appropriate compounds described in the text." The challenges of space exploration are a great stimulus to our technologies today. Development of successful aerospace programs has required the best efforts of the scientist and engineer in almost every discipline. Not so long ago, it truly could be said that designers are trying to develop tomorrow's vehicles with yesterday's materials. Unfortunately, we find that the situation remains nearly the same today. The purpose of this conference was to identify materials, proces ses, and methods that show the greatest potential in future space technology and to define the gap between mission requirements and materials application. Of the many properties of materials, the one in which the largest gap between fundamental understanding and practical application appears to exist is the mechanical property, particularly of crystalline materials. The emphasis on crystalline materials is a natural one. It is these materials which are used primarily when demands are placed on mechanical strength, especially at elevated temperatures. The advent of space exploration requires the utilization of materials in environments and under conditions that are a challenge to the resourcefulness and ingenuity of the scientist and engineer. The scientist can, as a result of the past thirty years' work, relate mechanical properties to the formation, motion, and interaction of individual crystalline defects, such as vacancies, interstitials, and dislocations. Furthermore, he can, by controlled preparation of his materials, confine his studies to those cases in which the concentration of crystal defects is conveniently low.
This book is intended to provide a fundamental basis for the study of the interaction of polymers with living systems, biochemicals, and with aqueous solutions. The surface chemistry and physics of polymeric materials is a subject not normally covered to any significant extent in classical surface chemistry textbooks. Many of the assumptions of classical surface chemistry are invalid when applied to polymer surfaces. Surface properties of polymers are important in the development of medical devices and diagnostic products. Surface properties are also of vital importance in fields such as adhesion, paints and coatings, polymer-filler interactions, heterogeneous catalysis, composites, and polymers for energy generation. The book begins with a chapter considering the current sources of information on polymer surface chemistry and physics. It moves on to consider the question of the dynamics of polymer surfaces and the implica tions of polymer surface dynamics on all subsequent characterization and interfacial studies. Two chapters are directed toward the question of model polymers for preparing model surfaces and interfaces. Complete treatments of X-ray photoelectron spectroscopy and attenuated total reflection infrared spectroscopy are given. There is a detailed treatment of the contact angle with particular emphasis on contact angle hysteresis in aqueous systems, followed by chapters on interfacial electrochemistry and interface acid-base charge-transfer properties. The very difficult problem of block and graft copolymer surfaces is also discussed. The problem of theoretical calculations of surface and interfacial tensions is presented. Raman spectroscopy is considered as an analytical technique for polymer surface characterization."
This book focuses on the importance of mobile ions presented in oxide structures, what significantly affects the metal-oxide-semiconductor (MOS) properties. The reading starts with the definition of the MOS structure, its various aspects and different types of charges presented in their structure. A review on ionic transport mechanisms and techniques for measuring the mobile ions concentration in the oxides is given, special attention being attempted to the Charge Pumping (CP) technique associated with the Bias Thermal Stress (BTS) method. Theoretical approaches to determine the density of mobile ions as well as their distribution along the oxide thickness are also discussed. The content varies from general to very specific examples, helping the reader to learn more about transport in MOS structures.
Since the discovery of superconductivity in 1911 by H. Kamerlingh Onnes, of the order of half a billion dollars has been spent on research directed toward understanding and utiliz ing this phenomenon. This investment has gained us fundamental understanding in the form of a microscopic theory of superconduc tivity. Moreover, superconductivity has been transformed from a laboratory curiosity to the basis of some of the most sensitive and accurate measuring devices known, a whole host of other elec tronic devices, a soon-to-be new international standard for the volt, a prototype generation of superconducting motors and gener ators, and magnets producing the highest continuous magnetic fields yet produced by man. The promise of more efficient means of power transmission and mass transportation, a new generation of superconducting motors and generators, and computers and other electronic devices with superconducting circuit elements is all too clear. The realization of controlled thermonuclear fusion is perhaps totally dependent upon the creation of enormous magnetic fields over large volumes by some future generation of supercon ducting magnets. Nevertheless, whether or not the technological promise of superconductivity comes to full flower depends as much, and perhaps more, upon economic and political factors as it does upon new technological and scientific breakthroughs. The basic science of superconductivity and its technological implications were the subject of a short course on "The Science and Technology of Superconductivity" held at Georgetown University, Washington, D. C., during 13-26 August 1971."
This was the third meeting in the series of special topical conferences on Non-Metallic materials at low temperatures. The first meeting was in Munich in 1978, the second in Geneva (1980) and so Heidelberg 1984 seemed an obvious time to review some of the hopes and objectives of the earlier meetings. It is also appropriate to consider the changing needs of the cryogenic community and how best the theory and practice of Non-metallic materials can be applied to suit this dynamic young science. The aims and objectives of the International Cryogenic Materials Board in sponsoring this meeting remain the same. Namely, to provide a forum where practicing Engineers can meet with materials suppliers and researchers in an attempt to ensure that a real understanding exists between the two sides of the Cryogenic Materials Community. In this atmosphere, real problems can be addressed together with full discussions of tried and tested practical solutions. It is in this way that knowledge and confidence may grow hand in hand with the logical growth of the industry.
Polymer science is a technology-driven science. More often than not, technological breakthroughs opened the gates to rapid fundamental and theoretical advances, dramatically broadening the understanding of experimental observations, and expanding the science itself. Some of the breakthroughs involved the creation of new materials. Among these one may enumerate the vulcanization of natural rubber, the derivatization of cellulose, the giant advances right before and during World War II in the preparation and characterization of synthetic elastomers and semi crystalline polymers such as polyesters and polyamides, the subsequent creation of aromatic high-temperature resistant amorphous and semi-crystal line polymers, and the more recent development of liquid-crystalline polymers mostly with n~in-chain mesogenicity. other breakthroughs involve the development of powerful characterization techniques. Among the recent ones, the photon correlation spectroscopy owes its success to the advent of laser technology, small angle neutron scattering evolved from n~clear reactors technology, and modern solid-state nuclear magnetic resonance spectroscopy exists because of advances in superconductivity. The growing need for high modulus, high-temperature resistant polymers is opening at present a new technology, that of more or less rigid networks. The use of such networks is rapidly growing in applications where they are used as such or where they serve as matrices for fibers or other load bearing elements. The rigid networks are largely aromatic. Many of them are prepared from multifunctional wholly or almost-wholly aromatic kernels, while others contain large amount of stiff difunctional residus leading to the presence of many main-chain "liquid-crystalline" segments in the "infinite" network.
This book is addressed to both research scientists at universities and technical institutes and to engineers in the metal forming industry. It is based upon the author's experience as head of the Materials Science Department of the In stitut fUr Umformtechnik at the University of Stuttgart. The book deals with materials testing for the special demands of the metal for ming industry. The general methods of materials testing, as far as they are not directly related to metal forming, are not considered in detail since many books are available on this subject. Emphasis is put on the determination of processing properties of metallic materials in metal forming, i. e. the forming behavior. This includes the evaluation of stress-strain curves by tensile, up setting or torsion tests as well as determining the limits of formability. Among these subjects, special emphasis has been laid upon recent developments in the field of compression and torsion testing. The transferability of test results is discussed. Some testing methods for the functional properties of workpieces in the final state after metal forming are described. Finally, methods of testing tool materials for bulk metal forming are treated. Testing methods for surface properties and tribological parameters have not been included. The emphasis is put on the deformation of the specimens. Prob lems related to the testing machines and measuring techniques as well as the use of computers are only considered in very few cases deemed necessary."
In Number 20 of Modern Aspects of Electrochemistry, we present chapters whose organization is typical for the series: They start with the most fundamental aspects and then work to the more complex. Thus, Jerry Goodisman gives us an interesting contribution on a subject in which he is one of the pioneers, the electron overlap contribution to the double layer potential difference. Closely related to this theme, but not always imbued with knowledge ofit, is the electron transfertheory, treated in this volume by the experienced author A. M. Kuznetsov ofthe Frumkin Institute. H. P. Agarwal is a well-known figure in the field of faradaic rectification, which he originated, and he now teils us about the more recent thinking in the field. On the other hand, Hector D. Abruna comes relatively new to us, and his field, that of X-ray interactions with electrodes, is new, too, but probably augers the trend for the future. The photoelectrochemical reduction of CO2 , described here by Isao Taniguchi from Kumamoto University, is a subject which will have much practical importance as the greenhouse effect continues. Finally, alu mi nu m in aqueous solutions and the physics of its anodic oxide is a subject which seems ever with us, and is described in its latest guise by Aleksandar Despie and Vitaly P. Parkhutik.
In this, the only book available to combine both theoretical and practical aspects of x-ray diffraction, the authors emphasize a "hands on" approach through experiments and examples based on actual laboratory data. Part I presents the basics of x-ray diffraction and explains its use in obtaining structural and chemical information. In Part II, eight experimental modules enable the students to gain an appreciation for what information can be obtained by x-ray diffraction and how to interpret it. Examples from all classes of materials -- metals, ceramics, semiconductors, and polymers -- are included. Diffraction patterns and Bragg angles are provided for students without diffractometers. 192 illustrations.
During the past ten years the use of ion implantation for doping semiconductors has become an active area of research and new device development. This doping technique has recently reached a level of maturity such that it is an integral step in the manu facturing of discrete semiconductor devices and integrated circuits. Ion implantation has significant advantages over diffusion such as: precision, purity, versatility, and automation; all of which are important for VLSI purposes. Ion implantation has also found new applications in magnetic bubble domain materials, superconductors, and materials synthesis. This book is a comprehensive bibliography of 2467 references of the world's literature on ion implantation as applied to micro electronics. This compilation will easily enable researchers to compare their work with that of others. For easy access to the needed references, the contents are divided into fifty-two subject headings. The main categories are: bibliographies, books and symposia, review articles, theory, materials, device applications, and equipment. An author index and a subject index are also given to provide easy access to the references. The literature from January 1976 to December 1980 is covered. The literature prior to 1976 is the subject, in part, of a previous book by the author (1). The main sources searched were: Physics Abstracts (PA) , Electrical and Electronics Abstracts (EEA) , Chemical Abstracts (CA) , Nuclear Science Abstracts (NSA) , and Engineering Index. The volumes and numbers of the abstracts are given to pro vide access to the abstracts.
The goals of the science of photobiology can be divided into four categories: to develop (I) ways to optimize the beneficial effects of light on man and his environment, (2) methods to protect organisms, including man, from the detrimental effects of light, (3) photochemical tools for use in studies of life processes, and (4) photochemical therapies in medicine. To achieve these goals will require the knowledgeable collaboration of biologists, chemists, engineers, mathematicians, physicians, and physicists; because photobiology is a truly multidisciplinary science. While a multidis ciplinary science is more intellectually demanding, it also has a greater potential for unexpected breakthroughs that can occur when data from several areas of science are integrated into new concepts for theoretical or practical use. Photochemical and Photobiological Reviews continues to provide in depth coverage of the many specialty areas of photobiology. It is hoped that these reviews will provide an important service to the younger scientists in the field and to senior scientists in related fields, because they provide a ready access to the recent literature in the field, and more importantly, they frequently offer a critical evaluation of the direction that the field is taking, or suggest a redirection when appropriate. Since it is important that this review series remain responsive to the needs of photochemists and photobiologists, the Editor would value com ments and suggestions from its readers.
Multi-chip modules (MCMs) with high wiring density, controlled impedance interconnects, and thermal management capability have recently been developed to address the problems posed by advances in electronic systems that make demands for higher speeds and complexity. MCM-C/Mixed Technologies and Thick Film Sensors highlights recent advances in MCM-C technology. Developments in materials and processes which have led to increased interconnection density are reviewed: finer resolution thick film inks, high performance-low temperature dielectric tapes, precision via generation by both laser and mechanical methods, and enhanced screen printing technologies have given us feature resolution to the 50 mum line/space level. Thermal management has greatly benefitted from such new materials as cofire AIN and diamond. MCM-C technology is compatible with thick film sensors, and work is reviewed on environmental gas sensors, pressure and temperature sensors, and the development of novel materials in this area.
Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition presents much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon. By properly understanding the properties of polycrystalline silicon and their relation to the deposition conditions, polysilicon can be designed to ensure optimum device and integrated-circuit performance. Polycrystalline silicon has played an important role in integrated-circuit technology for two decades. It was first used in self-aligned, silicon-gate, MOS ICs to reduce capacitance and improve circuit speed. In addition to this dominant use, polysilicon is now also included in virtually all modern bipolar ICs, where it improves the basic physics of device operation. The compatibility of polycrystalline silicon with subsequent high-temperature processing allows its efficient integration into advanced IC processes. This compatibility also permits polysilicon to be used early in the fabrication process for trench isolation and dynamic random-access-memory (DRAM) storage capacitors. In addition to its integrated-circuit applications, polysilicon is becoming vital as the active layer in the channel of thin-film transistors in place of amorphous silicon. When polysilicon thin-film transistors are used in advanced active-matrix displays, the peripheral circuitry can be integrated into the same substrate as the pixel transistors. Recently, polysilicon has been used in the emerging field of microelectromechanical systems (MEMS), especially for microsensors and microactuators. In these devices, the mechanical properties, especially the stress in the polysilicon film, are critical to successful device fabrication. Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition is an invaluable reference for professionals and technicians working with polycrystalline silicon in the integrated circuit and display industries.
The 30 contributions of this volume cover the main European regions for oil and gas exploration: the North Sea and adjacent areas, the central and eastern Mediterranean including offshore Albania, central and eastern Europe including Poland, Hungary, the Russian platform and offshore Bulgaria. Main topics are investigations to sequence stratigraphy, 3D-quantitative restoration and balanced structural sections, using the LOCACE equipment. Additional studies deal with a Monte Carlo method for generating models of porosity and permeability, with facies characterization using wireline logs or with petrographic applications of image analysis. As further reading this volume is of significant interest for researchers in oil and gas industries but also for scientists at universities.
The interest in materials property determination by nondestructive means is increasing especially for in-process and in-service inspection of structural and electronic materials and components. Such attention is due to several factors, including increased automation of manufacturing processes, the demand for greater reliability in consumer products and military hardware, and more severe demands on the performance of materials. This book represents the proceedings for the Symposium on Nondestructive Hethods for Haterial Property Determination held April 6 to 8, 1983, at the Hotel Hershey in Hershey, Pennsylvania. That symposium was one of the first meetings concerned specifically with nondestructive material property determination (characteriza tion). Its purpose was to stimulate intercourse between researchers, engineers, and theoreticians so as to focus upon the multidiseiplinary problems of advancing the state of the art in this area. The papers in the book are concerned mainly with acoustic (including ultrasonic), magnetic, electrical, and x-ray diffraction techniques and applications. Hany of the papers describe well developed technologies that are currently in practical application, while others discuss concepts which will never emerge from the laboratory but perhaps will provide the groundwork for more practical ideas."
This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.
To the surprise of practically no one, research and engineering on multi polymer materials has steadily increased through the 1960s and 1970s. More and more people are remarking that we are running out of new monomers to polymerize, and that the improved polymers of the future will depend heavily on synergistic combinations of existing materials. In the era of the mid-1960s, three distinct multipolymer combinations were recognized: polymer blends, grafts, and blocks. Although inter penetrating polymer networks, lPNs, were prepared very early in polymer history, and already named by Millar in 1960, they played a relatively low-key role in polymer research developments until the late 1960s and 1970s. I would prefer to consider the IPNs as a subdivision of the graft copolymers. Yet the unique topology of the IPNs imparts properties not easily obtainable without the presence of crosslinking. One of the objectives of this book is to point out the wealth of work done on IPNs or closely related materials. Since many papers and patents actually concerned with IPNs are not so designated, this literature is significantly larger than first imagined. It may also be that many authors will meet each other for the first time on these pages and realize that they are working on a common topology. The number of applications suggested in the patent literature is large and growing. Included are impact-resistant plastics, ion exchange resins, noise-damping materials, a type of thermoplastic elastomer, and many more."
Scientific and technical progress in our country depends largely on supplying im portant sections of the national economy with modern materials. This may be done by improving traditional materials, as well as by developing new ones that may be used under severe temperature, stress, and velocity conditions and that have com binations of certain physical and chemical properties. Refractory, superhard, corrosion-resistant, semiconductor, dielectric, and other materials are thus being created that will permit the development of new, highly effective tool materials, the implementation of technological processes in plasmas, and the solution of some materials-related aerospace and nuclear power problems. Refractory compounds play a vital role in the development of new materials and in the improvement of traditional materials. But information available on the properties of refractory compounds needed by scientists and engineers engaged in producing new materials for industry and technology has not yet been properly systematized. A first attempt in 1963 at such systematization (the first edition of this book) played some part in expanding the development and use of refractory compounds, but the information has now become seriously outdated, especially since in the last decade the study of refractory compounds in the USSR and abroad has grown very rapidly. In 1964 the handbook was, with certain additions, translated and published in the USA, but that publication was not readily available to the Soviet reader."
The first concern of scientists who are interested in synthetic polymers has always been, and still is: How are they synthesized? But right after this comes the question: What have I made, and for what is it good? This leads to the important topic of the structure-property relations to which this book is devoted. Polymers are very large and very complicated systems; their character ization has to begin with the chemical composition, configuration, and con formation of the individual molecule. The first chapter is devoted to this broad objective. The immediate physical consequences, discussed in the second chapter, form the basis for the physical nature of polymers: the supermolecular interactions and arrangements of the individual macromolecules. The third chapter deals with the important question: How are these chemical and physical structures experimentally determined? The existing methods for polymer characterization are enumerated and discussed in this chapter. The following chapters go into more detail. For most applications-textiles, films, molded or extruded objects of all kinds-the mechanical and the thermal behaviors of polymers are of pre ponderant importance, followed by optical and electric properties. Chapters 4 through 9 describe how such properties are rooted in and dependent on the chemical structure. More-detailed considerations are given to certain particularly important and critical properties such as the solubility and permeability of polymeric systems. Macromolecules are not always the final goal of the chemist-they may act as intermediates, reactants, or catalysts. This topic is presented in Chapters 10 and 11."
The present stage of technological development makes new and ever more complex demands on materials that have to work under conditions of high temperature and pressure, in high vacuum, and in corrosive media. In consequence special importance is now at tached to the refractory compounds of transition metals of groups IV to VI with such nonmetals as boron, carbon, silicon, and nitro gen. These compounds possess high melting points, great hard ness, and high refractory and corrosion-resisting properties. The most widely used and important compounds of this type from a technological point of view are the carbides, which are already fairly widely used in various fields of technology. The present collection of papers contains the results of re cent investigations into methods of producing high-purity carbides and also components made of the carbides and their alloys. Great attention has been paid to the study of a wide range of properties of the carbides and of alloys based on them, viz., the electro-and thermophysical, thermodynamic, mechanical, and chemical prop erties, and also to the utilization of the carbides as wear-and abrasion-resistant materials. In contrast to many previous publications dealing with carbides, the results presented in this collection relate to the properties of carbides having a definite phase composition, corresponding to a higher degree of purity 0 In some of the contributions the physical and chemical properties of the carbides are interpreted in terms of certain solid-state models and concepts concerning the types of chemical bonding in these compounds." |
You may like...
Autonomous Control for a Reliable…
Ivan Ganchev, R. D. van der Mei, …
Hardcover
R1,633
Discovery Miles 16 330
Natural Computing for Unsupervised…
Xiangtao Li, Ka-Chun Wong
Hardcover
R2,677
Discovery Miles 26 770
Enabling Smart Urban Services with GPS…
Chao Chen, Daqing Zhang, …
Hardcover
R4,648
Discovery Miles 46 480
Agents and Multi-agent Systems…
Gordan Jezic, Yun-Heh Jessica Chen-Burger, …
Hardcover
R5,201
Discovery Miles 52 010
Fuzzy Sets, Rough Sets, Multisets and…
Vicenc Torra, Anders Dahlbom, …
Hardcover
R4,757
Discovery Miles 47 570
5G IoT and Edge Computing for Smart…
Akash Kumar Bhoi, Victor Hugo Costa de Albuquerque, …
Paperback
R2,588
Discovery Miles 25 880
Practical Biometrics - From Aspiration…
Julian Ashbourn
Hardcover
Ontology Management - Semantic Web…
Martin Hepp, Pieter De Leenheer, …
Hardcover
R2,687
Discovery Miles 26 870
Optical Networks - Design and Modelling…
Giancarlo De Marchis, Roberto Sabella
Hardcover
R2,678
Discovery Miles 26 780
|