![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This unique book provides an up-to-date overview of the concepts behind lead-free soldering techniques. Readers will find a description of the physical and mechanical properties of lead-free solders, in addition to lead-free electronics and solder alloys. Additional topics covered include the reliability of lead-free soldering, tin whiskering and electromigration, in addition to emerging technologies and research.
"Real time" imaging techniques have assisted materials science studies especially for non-ambient environments. These techniques have never been collectively featured in a single venue. The book is an assembly of materials studies utilizing cutting edge real time imaging techniques, emphasizing the significance and impact of those techniques.
This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.
This book offers readers a snapshot of the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand materials to solve relevant issues in this field. The reader is introduced to the evolving role of molecular modeling, especially seen from the perspective of the IEEE community and modeling in electronics. This book also covers the aspects of molecular modeling needed to understand the relationship between structures and mechanical performance of materials. The authors also discuss the transitional topic of multiscale modeling and recent developments on the atomistic scale and current attempts to reach the submicron scale, as well as the role that quantum mechanics can play in performance prediction.
This book will address the advances, applications, research results, and emerging areas of optics, photonics, computational approaches, nano-photonics, bio-photonics, with applications in information systems. The objectives are to bring together novel approaches, analysis, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information. The book will concentrate on new approaches to information systems, including integration of computational algorithms, bio-inspired models, photonics technologies, information security, bio-photonics, and nano-photonics. Applications include bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on nano-scale, quantum optics, super resolution imaging, photonics for biological applications, microscopy, information optics, and holographic information systems.
Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.
Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si: H) constitutes both emitter" and base-contact/back surface field" on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si: H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell andtheir heterointerfaces are discussed and characterization techniques and simulation tools are presented. "
High-level synthesis - also called behavioral and architectural-level synthesis - is a key design technology to realize systems on chip/package of various kinds, whether single or multi-processors, homogeneousor heterogeneous, for the emb- ded systems market or not. Actually, as technology progresses and systems become increasingly complex, the use of high-level abstractions and synthesis methods becomes more and more a necessity. Indeed, the productivityof designers increases with the abstraction level, as demonstrated by practices in both the software and hardware domains. The use of high-level models allows designers with systems, rather than circuit, backgroundto be productive, thus matching the trend of industry whichisdeliveringanincreasinglylargernumberofintegratedsystemsascompared to integrated circuits. The potentials of high-level synthesis relate to leaving implementation details to the design algorithms and tools, including the ability to determine the precise timing of operations, data transfers, and storage. High-level optimization, coupled with high-levelsynthesis, canprovidedesignerswith the optimalconcurrencystr- ture for a data ow and corresponding technological constraints, thus providing the balancing act in the trade-offbetween latency and resource usage. For complex s- tems, the design space exploration, i.e., the systematic search for the Pareto-optimal points, can only be done by automated high-level synthesis and optimization tools. Nevertheless, high-level synthesis has been showing a long gestation period. Despite early resultsin the 1980s, it is still not commonpracticein hardwaredes
This book details the chemistry of visible light-induced photocatalysis using different classes of nanocomposites. Starting with a general introduction and explanation of basic principles and mechanisms of (visible) light-induced photocatalysis in the first two chapters (not omitting a plaidoyer for furthering research and development in this promising field), the following chapters detail the different types and classes of nanocomposites currently used in light-induced photocatalytic applications, including e.g. metal and mixed metal-oxide nanoparticles and -composites, nanoporous materials, polymeric and carbon-based nanocomposites. They explain the characteristics and importance of the different types of nanocomposites, as well as their synthesis and fabrication.In the end of the book an outlook on the unique applications of novel nanocomposites is offered, for example in water treatment and disinfection and removal of pollutants from wastewater, self-cleaning window panes based on photoactive materials, and many more. The book also addresses the challenges in present photocatalytic research, and therefore is a must-read for everybody interested in the developing field of nanocomposites and visible light-induced photocatalysis.
This volume provides a comprehensive study of the field Reconfigurable Computing. It provides an entry point to the novice willing to move in the research field reconfigurable computing, FPGA and system on programmable chip design. The book can also be used as teaching reference for a graduate course in computer engineering, or as reference to advance electrical and computer engineers. It provides a very strong theoretical and practical background to the field of reconfigurable computing, from the early Estrin's machine to the very modern architecture like coarse-grained reconfigurable device and the embedded logic devices. Apart from the introduction and the conclusion, the main chapters of the book are Architecture of reconfigurable systems, Design and implementation, High-Level Synthesis for Reconfigurable Devices, Temporal placement, On-line and Dynamic Interconnection, Designing a reconfigurable application on Xilinx Virtex FPGA, System on programmable chip, Applications.
This fascinating book is a treatise on real space-age materials. It is a mathematical treatment of a novel concept in material science that characterizes the properties of dynamic materials-that is, material substances whose properties are variable in space and time. Unlike conventional composites that are often found in nature, dynamic materials are mostly the products of modern technology developed to maintain the most effective control over dynamic processes.
This comprehensive book makes the important technologies and mathematical concepts behind today's optical communications systems accessible and understandable to practicing and future electrical and communication engineers. Featuring nearly 400 figures and over 900 equations, the book provides the practical engineering details and mathematical tools necessary to analyze and design optical fiber systems.
This thesis examines electrode materials such as mesoporous carbons, manganese oxides, iron oxides and their nanohybrids with graphene. It also explores several of the key scientific issues that act as the governing principles for future development of supercapacitors, which are a promising class of high-efficiency energy storage devices for tackling a key aspect of the energy crisis. However, critical technical issues, such as the low energy density and reliability, need to be addressed before they can be extended to a wide range of applications with much improved performance. Currently available material candidates for the electrodes all have their disadvantages, such as a low specific capacitance or poor conductivity for transition metal oxide/hydroxide-based materials. This thesis addresses these important issues, and develops a high-performance, flexible asymmetric supercapacitor with manganese oxides/reduced graphene oxide as the positive electrode and iron oxide/reduced graphene oxide as the anode, which delivers a high energy density of 0.056 Wh cm-3.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This thesis presents the latest findings on macroscopic-scale nanowire thin films composed of integrated nanowires. It introduces readers to essential synthesis and assembly strategies for the design and fabrication of high-quality nanowire thin films, and discusses their underlying principles in detail. The book highlights examples specific to well-aligned nanowire systems, and explores the applications of nanowire systems, including memory devices, flexible transparent electrodes, etc. The book offers a valuable resource for researchers and graduate students working in materials science, especially in nanowire device fabrication.
This book is focused on the study of physical mechanisms and device design for achieving high-performance infrared photodetection based on low-dimensional materials. Through theory analysis, material characterization and photo-electric measurements, it provides solutions to the trade-off problems which are commonly encountered in traditional infrared photodetectors and presents novel methods to improve the responsivity, detectivity and response speed. Researchers and scientists in the field of opto-electronic device can benefit from the book.
Presents information in a user-friendly, easy-access way so that the book can act as either a quick reference for more experienced engineers or as an introductory guide for new engineers and college graduates.
Fundamentals of Switching Theory and Logic Design discusses the basics of switching theory and logic design from a slightly alternative point of view and also presents links between switching theory and related areas of signal processing and system theory. Switching theory is a branch of applied mathematic providing mathematical foundations for logic design, which can be considered as a part of digital system design concerning realizations of systems whose inputs and outputs are described by logic functions.
Since scaling of CMOS is reaching the nanometer area serious limitations enforce the introduction of novel materials, device architectures and device concepts. Multi-gate devices employing high-k gate dielectrics are considered as promising solution overcoming these scaling limitations of conventional planar bulk CMOS. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies provides a technology oriented assessment of analog and mixed-signal circuits in emerging high-k and multi-gate CMOS technologies.
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.
Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. A follow-up, Solid State Lighting Reliability Part 2, was published in 2017. |
You may like...
Plasmonic Materials and Metastructures…
Shangjr Gwo, Andrea Alù, …
Paperback
R4,940
Discovery Miles 49 400
Quantum Materials, Devices, and…
Mohamed Henini, Marcelo Oliveira Rodrigues
Paperback
R4,909
Discovery Miles 49 090
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,057
Discovery Miles 50 570
Polymers in Electronics - Optoelectronic…
Zulkifli Ahmad, M. Khalil Abdullah, …
Paperback
R4,187
Discovery Miles 41 870
|