![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book discusses the mechanisms of electric conductivity in various ionic liquid systems (protic, aprotic as well as polymerized ionic liquids). It hence covers the electric properties of ionic liquids and their macromolecular counterpanes, some of the most promising materials for the development of safe electrolytes in modern electrochemical energy devices such as batteries, super-capacitors, fuel cells and dye-sensitized solar cells. Chapter contributions by the experts in the field discuss important findings obtained using broadband dielectric spectroscopy (BDS) and other complementary techniques. The book is an excellent introduction for readers who are new to the field of dielectric properties of ionic conductors, and a helpful guide for every scientist who wants to investigate the interplay between molecular structure and dynamics in ionic conductors by means of dielectric spectroscopy.
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of "slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of optics, optoelectronics, fiber communication, information technology and materials etc.
This book describes the design, fabrication and evaluation of a polymer-based neural interface for a cochlear electrode array, reviewed in terms of fabrication process, functionality, and reliability. Polymer-based devices have attracted attention in the neural prosthetic field due to their flexibility and compatibility with micro-fabrication process. A liquid crystal polymer (LCP) is an inert, highly water-resistant polymer suitable for the encapsulation of electronic components and as a substrate material for fabricating neural interfaces. The author has designed, fabricated, and evaluated an LCP-based cochlear electrode array for an improved polymer-based cochlear implant. The thesis deals with 3 key topics: atraumatic deep insertion, tripolar stimulation, and long-term reliability. Atraumatic insertion of the intracochlear electrode and resulting preservation of residual hearing have become essential in state-of-the-art cochlear implantation. A novel tapered design of an LCP-based cochlear electrode array is presented to meet such goals. For high-density and pitch-recognizable cochlear implant, channel interaction should be avoided. Local tripolar stimulation using multi-layered electrode sites are shown to achieve highly focused electrical stimulation. This thesis addresses another vital issue in the polymer-based neural implants: the long-term reliability issue. After suggesting a new method of forming mechanical interlocking to improve polymer-metal adhesion, the author performs accelerating aging tests to verify the method's efficacy. The aforementioned three topics have been thoroughly examined through various in vitro and in vivo studies. Verification foresees the development of LCP-based cochlear electrode array for an atraumatic deep insertion, advanced stimulation, and long-term clinical implant.
This book gives a comprehensive overview of recent advances in developing nanowires for building various kinds of electronic devices. Specifically the applications of nanowires in detectors, sensors, circuits, energy storage and conversion, etc., are reviewed in detail by the experts in this field. Growth methods of different kinds of nanowires are also covered when discussing the electronic applications. Through discussing these cutting edge researches, the future directions of nanowire electronics are identified.
In the past four years we have witnessed rapid development in technology and significant market penetration in many applications for LED systems. New processes and new materials have been introduced; new standards and new testing methods have been developed; new driver, control and sensing technologies have been integrated; and new and unknown failure modes have also been presented. In this book, Solid State Lighting Reliability Part 2, we invited the experts from industry and academia to present the latest developments and findings in the LED system reliability arena. Topics in this book cover the early failures and critical steps in LED manufacturing; advances in reliability testing and standards; quality of colour and colour stability; degradation of optical materials and the associated chromaticity maintenance; characterization of thermal interfaces; LED solder joint testing and prediction; common failure modes in LED drivers; root causes for lumen depreciation; corrosion sensitivity of LED packages; reliability management for automotive LEDs, and lightning effects on LEDs. This book is a continuation of Solid State Lighting Reliability: Components to Systems (published in 2013), which covers reliability aspects ranging from the LED to the total luminaire or system of luminaires. Together, these two books are a full set of reference books for Solid State Lighting reliability from the performance of the (sub-) components to the total system, regardless its complexity.
This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.
This new edition of the Phosphor Handbook comprises three volumes and provides a comprehensive source of knowledge for researchers interested in synthesis, characterization, properties, and applications of phosphor materials. The first volume covers the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. New sections include the rapid developments in principal phosphors in nitrides, perovskite, and silicon carbide. The second volume provides the descriptions of synthesis and optical properties of phosphors used in different applications, including the novel phosphors for some newly developed applications. New sections on smart phosphors, quantum dots for display applications, up-conversion nanophosphors for photonic application, phosphors for solar cells. The third volume addresses the experimental methods for phosphor evaluation and characterization and the contents are widely expanded from the Second Edition, including the theoretical and experimental designs for new phosphors as well as the phosphor analysis through high pressure and synchrotron studies.
The 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015) was held from 19-23 October 2015. This congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental and economic perspectives of energy. These proceedings included 40 peer-reviewed technical papers, submitted by leading academic and research institutions from over 23 countries and represented some of the most cutting-edge researches available. The sections included in the 40 papers are listed as follows: Solar Energy, Fuel cells, Hydrogen productions, Hydrogen storage, Energy storage, Energy saving, Biofuels and Bioenergy, Wind Energy, Nuclear Energy, Fossil Energy, Hydropower, Carbon capture and storage, Materials for renewable energy storage and conversion, Photovoltaics and solar cells, Fuel generation from renewables (catalysis), Carbon dioxide sequestration and conversion, Materials for energy saving, Thermoelectrics, Energy saving in buildings, Bio-Assessment and Toxicology, Air pollution from mobile and stationary sources, Transport of Air Pollutants, Environment-Friendly Construction and Development, Energy Management Systems.
This book examines the electronic structure of earth-abundant and environmentally friendly materials for use as absorber layers within photovoltaic cells. The corroboration between high-quality photoemission measurements and density of states calculations yields valuable insights into why these materials have demonstrated poor device efficiencies in the vast literature cited. The book shows how the materials' underlying electronic structures affect their properties, and how the band positions make them unsuitable for use with established solar cell technologies. After explaining these poor efficiencies, the book offers alternative window layer materials to improve the use of these absorbers. The power of photoemission and interpretation of the data in terms of factors generally overlooked in the literature, such as the materials' oxidation and phase impurity, is demonstrated. Representing a unique reference guide, the book will be of considerable interest and value to members of the photoemission community engaged in solar cell research, and to a wider materials science audience as well.
This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced.
Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. "Sensor Technologies for Civil Infrastructure Volume II" provides an overview of sensor data analysis and case studies in assessing and monitoring civil infrastructures. Partone focuses on sensor data interrogation and decision making, with chapters on data management technologies, data analysis, techniques for damage detection and structural damage detection. Parttwo is made up of case studies in assessing and monitoring specific structures such as bridges, towers, buildings, dams, tunnels, pipelines, and roads. "Sensor Technologies for Civil Infrastructure" provides a
standard reference for structural and civil engineers, electronics
engineers, and academics with an interest in the field.
This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring physical properties in the presence of intense light waves which alter the electron energy spectra) have also been discussed in this context. The influence quantizing magnetic field, on the EP of the different HD quantized structures (quantum wells, quantum well HD superlattices and nipi structures) under different physical conditions has been investigated. This monograph contains 100 open research problems which form the integral part of the text and are useful for both Ph.D aspirants and researchers in the fields of materials science, condensed matter physics, solid-state sciences, nano-science and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures offered in different Universities and Institutes.
This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided. This book also: * Provides readers with a unique approach and toolset for lab-on-a-chip development in terms of materials, fabrication techniques, and components * Discusses novel materials and techniques, such as paper-based devices and synthesis of chemical compounds on-chip * Covers the four key aspects of development: basic theory, design, fabrication, and testing * Provides readers with a comprehensive list of the most important journals, blogs, forums, and conferences where microfluidics and lab-on-a-chip news, methods, techniques and challenges are presented and discussed, as well as a list of companies providing design and simulation support, components, and/or developing lab-on-a-chip and microfluidic devices.
Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. "Sensor Technologies for Civil Infrastructure Volume I" provides an overview of sensor hardware and its use in data collection. The first chapters provide an introduction to sensing for structural performance assessment and health monitoring, and an overview of commonly used sensors and their data acquisition systems. Further chapters address different types of sensor including piezoelectric transducers, fiber optic sensors, acoustic emission sensors, and electromagnetic sensors, and the use of these sensors for assessing and monitoring civil infrastructures. Developments in technologies applied to civil infrastructure performance assessment are also discussed, including radar technology, micro-electro-mechanical systems (MEMS) and nanotechnology. "Sensor Technologies for Civil Infrastructure" provides a
standard reference for structural and civil engineers, electronics
engineers, and academics with an interest in the field.
This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solve the good parameters problem for parametric timed automata by computing a behavioral cartography of the system. Different extensions are proposed particularly for hybrid systems and applications to scheduling problems using timed automata with stopwatches. Various examples, both from the literature and industry, illustrate the techniques throughout the book.Various parametric verifications are performed, in particular of abstractions of a memory circuit sold by the chipset manufacturer ST-Microelectronics, as well as of the prospective flight control system of the next generation of spacecraft designed by ASTRIUM Space Transportation. Contents: 1. Parametric Timed Automata.2. The Inverse Method for Parametric Timed Automata.3. The Inverse Method in Practice: Application to Case Studies.4. Behavioral Cartography of Timed Automata.5. Parameter Synthesis for Hybrid Automata.6. Application to the Robustness Analysis of Scheduling Problems.7. Conclusion and Perspectives. About the Authors etienne Andre is Associate Professor in the Laboratoire d'Informatique de Paris Nord, in the University of Paris 13 (Sorbonne Paris Cite) in France. His current research interests focus on the verification of real-time systems.Romain Soulat is currently completing his PhD at the LSV laboratory at ENS-Cachan in France, focusing on the modeling and verification of hybrid temporal systems.
"Eco- and Renewable Energy Materials" provides a survey of the current topics and the major developmental trends in the rapidly growing research area of clean energy materials. This book covers, but is not limited to, photochemical materials (fuels from light), fuel cells (electricity from fuels), batteries (electricity storage), and hydrogen production and storage. This book is intended as a vehicle for the dissemination of research results on energy-based material science in the form of commissioned reviews and commentaries. This book is for scientists and engineers interested in energy-related materials, compounds and electronic devices. Prof. Yong Zhou is currently serving as a full professor at the Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, China.
An electronic device is a physical component of an electronic circuit or system, which is used to affect electrons and their associated fields in accordance with the function of that system. Such systems have a very broad range of applications, the main ones being, Industrial automation and motion control, information processing, telecommunication, and signal processing. Understandable Electronic Devices: Key concepts and circuit design provides a concise, easily understandable and convenient guide to electronics circuits. Coverage includes diodes, bipolar junction transistors, field effect transistors, amplifiers, oscillators, and voltage regulators. Each chapter includes worked examples of theorems, and clear summaries of procedures, methods and equations. Reviewing key concepts in modern electronics, this book is a valuable resource for anyone needing an overview of the principles of electronic devices and circuits, or to review or update their knowledge in this field. Written by a highly experienced instructor in the field, the book provides early-career professionals and college and university students with the necessary foundation in electronics. The book is also a useful resource for researchers and research professionals whose main field is not electronics but whose research requires a working knowledge of electronic circuits and devices.
The thesis covers a broad range of electronic, optical and
opto-electronic devices and various predicted physical effects. In
particular, it examines the quantum interference transistor effect
in graphene nanorings; tunable spin-filtering and spin-dependent
negative differential resistance in composite heterostructures
based on graphene and ferromagnetic materials; optical and novel
electro-optical bistability and hysteresis in compound systems and
the real-time control of radiation patterns of optical
nanoantennas. The direction of the main radiation lobe of a regular
plasmonic array can be changed abruptly by small variations in
external control parameters. This optical effect, apart from its
relevance for applications, is a revealing example of the Umklapp
process and, thus, is a visual manifestation of one of the most
fundamental laws of solid state physics: the conservation of the
quasi-momentum to within a reciprocal lattice vector. The thesis
analyzes not only results for particular device designs but also a
variety of advanced numerical methods which are extended by the
author and described in detail. These methods can be used as a
sound starting point for further research. |
You may like...
BSIM-Bulk Mosfet Model for Wireless and…
Chenming Hu, Harshit Agarwal, …
Paperback
R4,297
Discovery Miles 42 970
Hybrid Nanomaterials for Sustainable…
Janardhan Reddy Koduru, Rama Rao Karri, …
Paperback
R4,567
Discovery Miles 45 670
Multifunctional Oxide Heterostructures
Evgeny Y. Tsymbal, Elbio R. a. Dagotto, …
Hardcover
R4,419
Discovery Miles 44 190
|