![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.
This book describes innovative design solutions for radio-frequency identification (RFID) tags and antennas. Focusing mainly on passive ultra-high-frequency (UHF)-RFID tag antennas, it examines novel approaches based on the use of metamaterial-inspired resonators and other resonant structures as radiating elements. It also offers an exhaustive analysis of the radiation properties of several metamaterial-inspired resonators such as the split ring resonator (SRR) and related structures. Further, it discusses in detail an innovative technology for the RFID tagging of optical discs, which has demonstrated a significant improvement over the state of the art and resulted in a patent. By covering the entire research cycle of theory, design/simulation and fabrication/evaluation of RFID tags and antennas, while also reporting on cutting-edge technologies, the book provides graduate students, researchers and practitioners alike with a comprehensive and timely overview of RFID systems, and a closer look at several radiating structures.
To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc. Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis. The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices.
The information revolution of the twentieth century was brought about by microelectronics based on a simple and common material, silicon. Although silicon will continue to be of central importance in the next century, carbon, silicon's upstairs neighbor in the periodic table, will also be of great impor tance in future technology. Carbon has more flexible bonding and hence has various unique physical, chemical and biological properties. It has two types of bonding, sp3 and sp2, in diamond and graphite, respectively. The existence of the latter, "7r-electron bonding," is responsible for carbon's versatile tal ents. Those materials having extended 7r-electron clouds are called '7r-electron materials'. They include graphite, carbon nanotubes, fullerenes and various carbonaceous materials. They may be called "supercarbon" because of their fabulous multiformity and versatile properties. This volume is a status report on the synthesis, properties and appli cations of 7r-electron materials, representing an updated proceedings of the International Workshop on 7r-Electron Materials held at the Northwestern University, 'Evanston, Illinois, USA, August 13-14,1996. The Workshop was organized jointly by the Japan Science and Technology Corporation (JST) and the Materials Research Center at the Northwestern University (NWU) in order to provide an opportunity for scientists and engineers to meet and dis cuss the latest advances in this field and in commemoration of the Yoshimura 7r-Electron Materials Project, one of Japan's national projects in the JST's ERATO (Exploratory Research for Advanced Technology) program."
Liquid Crystal Display Drivers deals with Liquid Crystal Displays from the electronic engineering point of view and is the first expressively focused on their driving circuits. After introducing the physical-chemical properties of the LC substances, their evolution and application to LCDs, the book converges to the examination and in-depth explanation of those reliable techniques, architectures, and design solutions amenable to efficiently design drivers for passive-matrix and active-matrix LCDs, both for small size and large size panels. Practical approaches regularly adopted for mass production but also emerging ones are discussed. The topics treated have in many cases general validity and found application also in alternative display technologies (OLEDs, Electrophoretic Displays, etc.).
This thesis examines a novel class of flexible electronic material with great potential for use in the construction of stretchable amplifiers and memory elements. Most remarkably the composite material produces spontaneous oscillations that increase in frequency when pressure is applied to it. In this way, the material mimics the excitatory response of pressure-sensing neurons in the human skin. The composites, formed of silicone and graphitic nanoparticles, were prepared in several allotropic forms and functionalized with naphthalene diimide molecules. A systematic study is presented of the negative differential resistance (NDR) region of the current-voltage curves, which is responsible for the material's active properties. This study was conducted as a function of temperature, graphite filling fraction, scaling to reveal the break-up of the samples into electric field domains at the onset of the NDR region, and an electric-field induced metal-insulator transition in graphite nanoparticles. The effect of molecular functionalization on the miscibility threshold and the current-voltage curves is demonstrated. Room-temperature and low-temperature measurements were performed on these composite films under strains using a remote-controlled, custom-made step motor bench.
This book presents the state of the art in surface wrinkling, including current and future potential applications in biomedicine, tissue engineering, drug delivery, microfluidic devices, and other promising areas. Their use as templates, flexible electronics, and supports with controlled wettability and/or adhesion for biorelated applications demonstrate how the unique characteristics of wrinkled interfaces play a distinguishing and remarkable role. The fabrication approaches employed to induce wrinkle formation and the potential to fine-tune the amplitude and period of the wrinkles, their functionality, and their final morphology are thoroughly described. An overview of the main applications in which these buckled interfaces have already been employed or may have an impact in the near future is included. Presents a detailed description of the physical phenomena and strategies occurring at polymer surfaces to produce wrinkled surface patterns; Examines the different methodologies to produce morphology-controlled wrinkled surface patterns by means of physical and chemical treatment methods; Provides clear information on current and potential applications in flexible electronics and biomaterials, which are leading the use of these materials.
This book presents synthesis techniques for the preparation of low-dimensional nanomaterials including 0D (quantum dots), 1D (nanowires, nanotubes) and 2D (thin films, few layers), as well as their potential applications in nanoelectronic systems. It focuses on the size effects involved in the transition from bulk materials to nanomaterials; the electronic properties of nanoscale devices; and different classes of nanomaterials from microelectronics to nanoelectronics, to molecular electronics. Furthermore, it demonstrates the structural stability, physical, chemical, magnetic, optical, electrical, thermal, electronic and mechanical properties of the nanomaterials. Subsequent chapters address their characterization, fabrication techniques from lab-scale to mass production, and functionality. In turn, the book considers the environmental impact of nanotechnology and novel applications in the mechanical industries, energy harvesting, clean energy, manufacturing materials, electronics, transistors, health and medical therapy. In closing, it addresses the combination of biological systems with nanoelectronics and highlights examples of nanoelectronic-cell interfaces and other advanced medical applications. The book answers the following questions: * What is different at the nanoscale? * What is new about nanoscience? * What are nanomaterials (NMs)? * What are the fundamental issues in nanomaterials? * Where are nanomaterials found? * What nanomaterials exist in nature? * What is the importance of NMs in our lives? * Why so much interest in nanomaterials? * What is at nanoscale in nanomaterials? * What is graphene? * Are pure low-dimensional systems interesting and worth pursuing? * Are nanotechnology products currently available? * What are sensors? * How can Artificial Intelligence (AI) and nanotechnology work together? * What are the recent advances in nanoelectronic materials? * What are the latest applications of NMs?
The principal aim of this NATO Advanced Study Institute (ASI) "Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology" was to present a contemporary overview of the field of nanostructured and advanced electronic materials. Nanotechnology is an emerging scientific field receiving significant worldwide attention. On a nanometer scale, materials or structures may possess new and unique physical properties. Some of these are now known to the scientific community, but there may well be many properties not yet known to us, rendering it as a fascinating area of research and a suitable subject for a NATO ASI. Yet another aspect of the field is the possibility for creating meta-stable phases with unconventional properties and the ultra-miniaturization of current devices, sensors, and machines. Such nanotechnological and related advanced materials have an extremely wide range of potential applications, viz. nanoscale electronics, sensors, optoelectronics, photonics, nano-biological systems, na- medicine, energy storage systems, etc. This is a wide-ranging subject area and therefore requires the formation of multi-disciplinary teams of physicists, chemists, materials scientists, engineers, molecular biologists, pharmacologists, and others to work together on the synthesis and processing of materials and structures, the understanding of their physical properties, the design and fabrication of devices, etc. Hence, in formulating our ASI, we adopted an int- disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development.
The motion of electrons in superconductors seems to exceed our imagination based on daily experience with Newtonian mechanics. This book shows that the classical concepts, such as the balance of forces acting on electrons, are useful for understanding superconductivity. The electrostatic field plays a natural part in this balance as it mediates forces between electrons at long distances.
This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.
The application of quantitative reliability evaluation in electric power sys tems has now evolved to the point at which most utilities use these techniques in one or more areas of their planning, design, and operation. Most of the techniques in use are based on analytical models and resulting analytical evaluation procedures. Improvements in and availability of high-speed digi tal computers have created the opportunity to analyze many of these prob lems using stochastic simulation methods and over the last decade there has been increased interest in and use made of Monte Carlo simulation in quantitative power system reliability assessment. Monte Carlo simulation is not a new concept and recorded applications have existed for at least 50 yr. However, localized high-speed computers with large-capacity storage have made Monte Carlo simulation an available and sometimes preferable option for many power system reliability applications. Monte Carlo simulation is also an integral part of a modern undergrad uate or graduate course on reliability evaluation of general engineering systems or specialized areas such as electric power systems. It is hoped that this textbook will help formalize the many existing applications of Monte Carlo simulation and assist in their integration in teaching programs. This book presents the basic concepts associated with Monte Carlo simulation."
BiCMOS Technology and Applications, Second Edition provides a synthesis of available knowledge about the combination of bipolar and MOS transistors in a common integrated circuit - BiCMOS. In this new edition all chapters have been updated and completely new chapters on emerging topics have been added. In addition, BiCMOS Technology and Applications, Second Edition provides the reader with a knowledge of either CMOS or Bipolar technology/design a reference with which they can make educated decisions regarding the viability of BiCMOS in their own application. BiCMOS Technology and Applications, Second Edition is vital reading for practicing integrated circuit engineers as well as technical managers trying to evaluate business issues related to BiCMOS. As a textbook, this book is also appropriate at the graduate level for a special topics course in BiCMOS. A general knowledge in device physics, processing and circuit design is assumed. Given the division of the book, it lends itself well to a two-part course; one on technology and one on design. This will provide advanced students with a good understanding of tradeoffs between bipolar and MOS devices and circuits.
Large computational resources are of ever increasing importance for the simulation of semiconductor processes, devices and integrated circuits. The Workshop on Computational Electronics was intended to be a forum for the dis cussion of the state-of-the-art of device simulation. Three major research areas were covered: conventional simulations, based on the drift-diffusion and the hydrodynamic models; Monte Carlo methods and other techniques for the solution of the Boltzmann transport equation; and computational approaches to quantum transport which are relevant to novel devices based on quantum interference and resonant tunneling phenomena. Our goal was to bring together researchers from various disciplines that contribute to the advancement of device simulation. These include Computer Sci ence, Electrical Engineering, Applied Physics and Applied Mathematics. The suc cess of this multidisciplinary formula was proven by numerous interactions which took place at the Workshop and during the following three-day Short Course on Computational Electronics. The format of the course, including a number of tutorial lectures, and the large attendance of graduate students, stimulated many discussions and has proven to us once more the importance of cross-fertilization between the different disciplines."
An increasing number of system designers are using ASIP 's rather than ASIC 's to implement their system solutions. Building ASIPs: The Mescal Methodology gives a simple but comprehensive methodology for the design of these application-specific instruction processors (ASIPs). The key elements of this methodology are: Judiciously using benchmarking Inclusively identifying the architectural space Efficiently describing and evaluating the ASIPs Comprehensively exploring the design space Successfully deploying the ASIP This book includes demonstrations of applications of the methodologies using the Tipi research framework as well as state-of-the-art commercial toolsets from CoWare and Tensilica.
This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped semiconductors and their nanostructures has been investigated. This monograph contains 150 open research problems which form the integral part of the text and are useful for both PhD students and researchers in the fields of solid-state sciences, materials science, nano-science and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures.
Design for AT-Speed Test, Diagnosis and Measurement is the first book to offer practical and proven design-for-testability (DFT) solutions to chip and system design engineers, test engineers and product managers at the silicon level as well as at the board and systems levels. Designers will see how the implementation of embedded test enables simplification of silicon debug and system bring-up. Test engineers will determine how embedded test provides a superior level of at-speed test, diagnosis and measurement without exceeding the capabilities of their equipment. Product managers will learn how the time, resources and costs associated with test development, manufacture cost and lifecycle maintenance of their products can be significantly reduced by designing embedded test in the product. A complete design flow and analysis of the impact of embedded test on a design makes this book a must read' before any DFT is attempted.
GaAs devices and integrated circuits have emerged as leading contenders for ultra-high-speed applications. This book is intended to be a reference for a rapidly growing GaAs community of researchers and graduate students. It was written over several years and parts of it were used for courses on GaAs devices and integrated circuits and on heterojunction GaAs devices developed and taught at the University of Minnesota. Many people helped me in writing this book. I would like to express my deep gratitude to Professor Lester Eastman of Cornell University, whose ideas and thoughts inspired me and helped to determine the direction of my research work for many years. I also benefited from numerous discussions with his students and associates and from the very atmosphere of the pursuit of excellence which exists in his group. I would like to thank my former and present co-workers and colleagues-Drs. Levinstein and Gelmont of the A. F. Ioffe Institute of Physics and Technology, Professor Melvin Shaw of Wayne State University, Dr. Kastalsky of Bell Communi cations, Professor Gary Robinson of Colorado State University, Professor Tony Valois, and Dr. Tim Drummond of Sandia Labs-for their contributions to our joint research and for valuable discussions. My special thanks to Professor Morko.;, for his help, his ideas, and the example set by his pioneering work. Since 1978 I have been working with engineers from Honeywell, Inc.-Drs.
A totally new concept for clean surface processing of Si wafers is introduced in this book. Some fifty distinguished researchers and engineers from the leading Japanese semiconductor companies, such as NEC, Hitachi, Toshiba, Sony and Panasonic as well as from several universities reveal to us for the first time the secrets of these highly productive institutions. They describe the techniques and equipment necessary for the preparation of clean high-quality semiconductor surfaces as a first step in high-yield/high-quality device production. This book thus opens the door to the manufacturing of reliable nanoscale devices and will be extremely useful for every engineer, physicist and technician involved in the production of silicon semiconductor devices.
Semiconductor power electronics plays a dominant role due its increased efficiency and high reliability in various domains including the medium and high electrical drives, automotive and aircraft applications, electrical power conversion, etc. Power/HVMOS Devices Compact Modeling will cover very extensive range of topics related to the development and characterization power/high voltage (HV) semiconductor technologies as well as modeling and simulations of the power/HV devices and smart power integrated circuits (ICs). Emphasis is placed on the practical applications of the advanced semiconductor technologies and the device level compact/spice modeling. This book is intended to provide reference information by selected, leading authorities in their domain of expertise. They are representing both academia and industry. All of them have been chosen because of their intimate knowledge of their subjects as well as their ability to present them in an easily understandable manner.
This monograph is intended for scientists and TCAD engineers who are interested in physics-based simulation of Si and SiGe devices. The common theoretical background of the drift-diffusion, hydrodynamic, and Monte-Carlo models and their synergy are discussed and it is shown how these models form a consistent hierarchy of simulation tools. The basis of this hierarchy is the full-band Monte-Carlo device model which is discussed in detail, including its numerical and stochastic properties. The drift-diffusion and hydrodynamic models for large-signal, small-signal, and noise analysis are derived from the Boltzmann transport equation in such a way that all transport and noise parameters can be obtained by Monte-Carlo simulations. With this hierarchy of simulation tools the device characteristics of strained Si MOSFETs and SiGe HBTs are analysed and the accuracy of the momentum-based models is assessed by comparison with the Monte-Carlo device simulator.
The rapid evolution and explosive growth of integrated circuit technology have impacted society more than any other technological development of the 20th century. Integrated circuits (ICs) are used universally and the expanding use of IC technology requires more accurate circuit analysis methods and tools, prompting the introduction of computers into the design process. The goal of this book is to build a firm foundation in the use of computer-assisted techniques for IC device and process design. Both practical and analytical viewpoints are stressed to give the reader the background necessary to appreciate CAD tools and to feel comfortable with their use. Technology CAD - Computer Simulation of IC Processes and Devices presents a unified discourse on process and device CAD as interrelated subjects, building on a wide range of experiences and applications of the SUPREM program. Chapter 1 focuses on the motivation for coupled process and device CAD. In Chapter 2 SUPREM III is introduced, and process CAD is discussed in terms of ion-implantation, impurity diffusion, and oxidation models. Chapter 3 introduces the Stanford device analysis program SEDAN III (SEmiconductor Device ANalysis). The next three chapters move into greater detail concerning device operating principles and analysis techniques. Chapter 4 reviews the classical formulation of pn junction theory and uses device analysis (SEDAN) both to evaluate some of the classical assumptions and to investigate the difficult problem of high level injection. Chapter 5 returns to MOS devices, reviews the first-order MOS theory, and introduces some important second-order effects. Chapter 6 considers the bipolar transistor. Chapter 7considers the application of process simulation and device analysis to technology design. The BiCMOS process is selected as a useful design vehicle for two reasons. First, it allows the reader to pull together concepts from the entire book. Second, the inherent nature of BiCMOS technology offers real constraints and hence trade-offs which must be understood and accounted for.
System Test and Diagnosis is the first book on test and diagnosis at the system level, defined as any aggregation of related elements that together form an entity of sufficient complexity for which it is impractical to treat all of the elements at the lowest level of detail. The ideas presented emphasize that it is possible to diagnose complex systems efficiently. Since the notion of system is hierarchical, these ideas are applicable to all levels. The philosophy is presented in the context of a model-based approach, using the information flow model, that focuses on the information provided by the tests rather than the functions embedded in the system. Detailed algorithms are offered for evaluating system testability, performing efficient diagnosis, verifying and validating the models, and constructing an architecture for system maintenance. Several advanced algorithms, not commonly available in existing diagnosis tools, are discussed, including reasoning with inexact or uncertain test data, breaking large problems into manageable smaller problems, diagnosing systems with time sensitive information and time dependent tests and learning from experience. The book is divided into three parts. The first part provides motivation for careful development of the subject and the second part provides the tools necessary for analyzing system testability and computing diagnostic strategies. The third part presents advanced topics in diagnosis. Several case studies are provided, including a single detailed case study. Smaller case studies describe experiences from actual applications of the methods discussed. The detailed case study walks the reader through a complete analysis of a system to illustrate the concepts and describe the analyses that are possible. All case studies are based upon real systems that have been modeled for the purposes of diagnosis. System Test and Diagnosis is the culmination of nearly twelve years of research into diagnosis modeling and its applications. It is designed as a primary reference for engineers and practitioners interested in system test and diagnosis.
Branch-and-bound search has been known for a long time and has been widely used in solving a variety of problems in computer-aided design (CAD) and many important optimization problems. In many applications, the classic branch-and-bound search methods perform duplications of computations, or rely on the search decision trees which keep track of the branch-and-bound search processes. In CAD and many other technical fields, the computational cost of constructing branch-and-bound search decision trees in solving large scale problems is prohibitive and duplications of computations are intolerable. Efficient branch-and-bound methods are needed to deal with today's computational challenges. Efficient branch-and-bound methods must not duplicate computations. Efficient Branch and Bound Search with Application to Computer-Aided Design describes an efficient branch-and-bound method for logic justification, which is fundamental to automatic test pattern generation (ATPG), redundancy identification, logic synthesis, minimization, verification, and other problems in CAD. The method is called justification equivalence, based on the observation that justification processes may share identical subsequent search decision sequences. With justification equivalence, duplication of computations is avoided in the dynamic branch-and-bound search process without using search decision trees. Efficient Branch and Bound Search with Application to Computer-Aided Design consists of two parts. The first part, containing the first three chapters, provides the theoretical work. The second part deals with applications, particularly ATPG for sequential circuits. This book is particularly useful to readers who are interested in the design and test of digital circuits.
Gallium Arsenide technology has come of age. GaAs integrated circuits are available today as gate arrays with an operating speed in excess of one Gigabits per second. Special purpose GaAs circuits are used in optical fiber digital communications systems for the purpose of regeneration, multiplexing and switching of the optical signals. As advances in fabrication and packaging techniques are made, the operat ing speed will further increase and the cost of production will reach a point where large scale application of GaAs circuits will be economical in these and other systems where speed is paramount. This book is written for students and engineers who wish to enter into this new field of electronics for the first time and who wish to embark on a serious study of the subject of GaAs circuit design. No prior knowledge of GaAs technology is assumed though some previous experience with MOS circuit design will be helpful. A good part of the book is devoted to circuit analysis, to the extent that is possible for non linear circuits. The circuit model of the GaAs transistor is derived from first principles and analytic formulas useful in predicting the approxi mate circuit performance are also derived. Computer simulation is used throughout the book to show the expected performance and to study the effects of parameter variations." |
You may like...
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
R884
Discovery Miles 8 840
The Intersection of Animation, Video…
Lisa Scoggin, Dana Plank
Hardcover
R3,921
Discovery Miles 39 210
Human Sexuality - Function, Dysfunction…
Ami Rokach, Karishma Patel
Paperback
R2,059
Discovery Miles 20 590
Analytics, Operations, and Strategic…
Gerald William Evans, William E. Biles, …
Hardcover
R5,333
Discovery Miles 53 330
|