Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
A gripping look at the rise of the microchip and the British tech company caught in the middle of the global battle for dominance. One tiny device lies at the heart of the world's relentless technological advance: the microchip. Today, these slivers of silicon are essential to running just about any machine, from household devices and factory production lines to smartphones and cutting-edge weaponry. At the centre of billions of these chips is a blueprint created and nurtured by a single company: Arm. Founded in Cambridge in 1990, Arm's designs have been used an astonishing 250 billion times and counting. The UK's high-tech crown jewel is an indispensable part of a global supply chain driven by American brains and Asian manufacturing brawn that has become the source of rising geopolitical tension. With exclusive interviews and exhaustive research, The Everything Blueprint tells the story of Arm, from humble beginnings to its pivotal role in the mobile phone revolution and now supplying data centres, cars and the supercomputers that harness artificial intelligence. It explores the company's enduring relationship with Apple and numerous other tech titans, plus its multi-billion-pound sale to the one-time richest man in the world, Japan's Masayoshi Son. The Everything Blueprint details the titanic power struggle for control of the microchip, through the eyes of a unique British enterprise that has found itself in the middle of that battle.
You ve just purchased a TI-83 Plus calculator to assist in performing different types of mathematical equations now, how can you get the most out of it? You ll find the answer to this question with our comprehensive, 3-panel guide that shows in great detail what exactly the TI-83 Plus can do. Function key and mode descriptions, as well as problem-solving examples, are included within a color-coded format for easy reference. "
Modelling Methodologies in Analogue Integrated Circuit Design provides a holistic view of modelling for analogue, high frequency, mixed signal, and heterogeneous systems for designers working towards improving efficiency, reducing design times, and addressing the challenges of representing aging, variability, and other technical challenges at the nanometre scale. The book begins by introducing the concept, history, and development of circuit design up to the present day. The first half of the book then covers various modelling methodologies and addresses model accuracy and verification. Modelling approaches are introduced theoretically along with simple examples to demonstrate the concepts. Later chapters approach modelling from the application point of view, including case studies from the vast domain of integrated circuit design. Topics covered include response surface modeling; machine learning; data-driven and physics-based modeling; verification of modelling: metrics and methodologies; an overview of modern, automated analog circuit modeling methods; machine learning techniques for the accurate modeling of integrated inductors for RF applications; modeling of variability and reliability in analog circuits; modeling of pipeline ADC functionality and non-idealities; power systems modelling; case study - an efficient design and layout of a 3D accelerometer by automated synthesis; and sensing schemes for spintronic resistive memories.
Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries — the chiral multifold fermions — that can be understood as a higher-spin generalization of Weyl fermions. This work provides a complete description of all chiral multifold fermions, studying their topological properties and the k·p models describing them. We compute the optical conductivity of all chiral multifold fermions and establish their optical selection rules. We find that the activation frequencies are different for each type of multifold fermion, thus constituting an experimental fingerprint for each type of multifold fermion. Building on the theoretical results obtained in the first part of our analysis, we study two chiral multifold semimetals: RhSi and CoSi. We analyze the experimental results with k·p and tight-binding models based on the crystal symmetries of the material. We trace back the features observed in the experimental optical conductivity to the existence of multifold fermions near the Fermi level and estimate the chemical potential and the scattering lifetime in both materials. Finally, we provide an overview of second-order optical responses and study the second-harmonic generation of RhSi. We find a sizeable second-harmonic response in the low-energy regime associated with optical transitions between topological bands. However, this regime is extremely challenging to access with the current experimental techniques. We conclude by providing an overview of the main results, highlighting potential avenues to further research on chiral multifold semimetals and the future of optical responses as experimental probes to characterize topological phases.
Recently, a new digital twin consortium has been established that aims to deploy digital twin technology in new markets as well as in the development of smart cities. Designing smart cities, smart communities, and smart ecosystems powered by optimal digital twin deployments is a vision that currently only futurists can entertain and requires some time to reach large-scale adoption. However, it is incumbent upon us as a society to educate and train future generations on how to leverage digital twin technologies in order to optimize our daily lives as well as increase our efficiency, productivity, and safety. Impact of Digital Twins in Smart Cities Development provides insights regarding the global landscape for current digital twin research and deployments and highlights some of the challenges and opportunities faced during large-scale adoptions. Critical domains such as ethics, data governance, cybersecurity, inclusion, diversity, and sustainability are also addressed and considered. Covering topics such as digital identity and digital economics, this reference work is ideal for urban planners, engineers, policymakers, industry leaders, scientists, economists, academicians, practitioners, researchers, instructors, and students.
This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.
Today, air-to-surface vessel (ASV) radars, or more generally maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW - Air to Surface Warfare) and for hunting submarines (ASW - anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U-Boats. This book describes the ASV radars developed in the UK after WWII (1946-2000) and used by the RAF for long-range maritime surveillance.
This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.
Today, air-to-surface vessel (ASV) radars, or more generally airborne maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW--anti-surface warfare) and for hunting submarines (ASW--anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U boats. This book describes the ASV radars developed in the UK and used by RAF Coastal Command during WWII for long-range maritime surveillance.
This book covers a broad range of topics from the interdisciplinary research field of ultrafast intense laser science, focusing on atoms and molecules interacting with intense laser fields, laser-induced filamentation, high-order harmonics generation, and high power lasers and their applications. This sixteenth volume features contributions from world-renowned researchers, introducing the latest reports on probing molecular chirality with intense laser fields, and the most recent developments in the Shanghai Superintense Ultrafast Laser Facility project. The PUILS series delivers up-to-date reviews of progress in this emerging interdisciplinary research field, spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each of their own subfields of ultrafast intense laser science. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, especially graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
This volume gathers the latest advances, innovations and applications in the field of vibration and technology of machinery, as presented by leading international researchers and engineers at the XV International Conference on Vibration Engineering and Technology of Machinery (VETOMAC), held in Curitiba, Brazil on November 10-15, 2019. Topics include concepts and methods in dynamics, dynamics of mechanical and structural systems, dynamics and control, condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and MEMS. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book addresses the development, properties, and applications of atomic-layered boron, or, borophene. The authors explain how borophene was predicted and created before investigating the properties that make it a desirable and useful material. The material is extremely thin and possesses exotic quantum states of new Dirac physics. Applications in superconductivity, plasmonics, and industrial chemical catalysis are examined, along with an examination of the material's unique hydrogen boride and boron nitride forms. Given the varied potential uses for the new-developed borophene, this timely book will be useful to researchers in academia and industry.
This book looks at advanced nanocomposites, introducing long-awaited concepts towards bridging the gap between nanostructured optical materials and next-generation imaging systems. It investigates nanocomposites as bulk optical materials and highlights the immense potential they hold for real-world optical elements and systems, such as smartphone cameras. It covers the full spectrum of nanocomposite optical materials from their fundamental properties to analytical modeling and detailed application examples. This book also provides an in-depth discussion of the role these new materials play in the development of broadband flat optics - diffractive optical elements used for enhancing high-end broadband imaging systems. Written by an industry expert, this book seamlessly connects fundamental research and real-world applications. It is the ideal guide both for optical engineers working towards integrating new technologies, and researchers involved with fundamental research on optical materials.
This book presents the emerging regime of zero refractive index photonics, involving metamaterials that exhibit effectively zero refractive index. Metamaterials are artificial structures whose optical properties can be tailored at will. With metamaterials, intriguing and spellbinding phenomena like negative refraction and electromagnetic cloaking could be realized, which otherwise seem unnatural or straight out of science fiction. Zero index metamaterials are also seen as a means of boosting nonlinear properties and are believed to have strong prospects for being useful in nonlinear optical applications. In summary, this book highlights almost everything currently available on zero index metamaterials and is useful for professionally interested and motivated readers. |
You may like...
Crystalline Silicon Solar Cells - Carbon…
Saleem Hussain Zaidi
Hardcover
R3,535
Discovery Miles 35 350
Laser Optoelectronic Oscillators
Alexander A. Bortsov, Yuri B. Il'in, …
Hardcover
R4,299
Discovery Miles 42 990
Functionality-Enhanced Devices - An…
Pierre-Emmanuel Gaillardon
Hardcover
Advanced Materials for Future Terahertz…
Aritra Acharyya, Palash Das
Hardcover
R3,954
Discovery Miles 39 540
|