![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
Advances in Imaging and Electron Physics, Volume 208, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Advances in Imaging and Electron Physics, Volume 207, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Advances in Imaging and Electron Physics, Volume 205 is the latest release in this series that merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications, Second Edition highlights new, important developments in the field, including the latest on magnetic sensors, temperature sensors and microreaction chambers. The book outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, among other topics. New sections include discussions on magnetic and temperature sensors and the industrial applications of smart micro-electro-mechanical systems (MEMS). The book is an invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry. In addition, engineers looking for industrial sensing, monitoring and automation solutions will find this a comprehensive source of information.
MEMS for automotive and aerospace applications reviews the use of
Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to
the unique challenges presented by the automotive and aerospace
industries.
Ultrasonic transducers are key components in sensors for distance,
flow and level measurement as well as in power, biomedical and
other applications of ultrasound. Ultrasonic transducers reviews
recent research in the design and application of this important
technology.
In this book Ian Sinclair provides the practical knowhow required
by technician engineers, systems designers and students. The focus
is firmly on understanding the technologies and their different
applications, not a mathematical approach. The result is a highly
readable text which provides a unique introduction to the selection
and application of sensors, transducers and switches, and a
grounding in the practicalities of designing with these devices.
Approx.400 pages
Functionalized Nanomaterials for Biosensing and Bioelectronics Applications: Trends and Challenges describes current and future opportunities for integrating the unique properties of two-dimensional nanomaterials with bioelectronic interfaces. Sections focus on background information and fundamental concepts, review the available functionalized nanomaterials and their properties, explore the integration of functionalized nanomaterials with bioelectronics, including available fabrication and characterization methods, electrical behavior at the interface, and design and synthesis guidelines, and review examples of microsystems where functionalized nanomaterials are being integrated with bioelectronics. This book is suitable for researchers and practitioners in academia and R&D working in materials science and engineering, analytical chemistry and related fields.
You ve just purchased a TI-83 Plus calculator to assist in performing different types of mathematical equations now, how can you get the most out of it? You ll find the answer to this question with our comprehensive, 3-panel guide that shows in great detail what exactly the TI-83 Plus can do. Function key and mode descriptions, as well as problem-solving examples, are included within a color-coded format for easy reference. "
Plasmonic Materials and Metastructures: Fundamentals, Current Status, and Perspectives reviews the current status and emerging trends in the development of conventional and alternative plasmonic materials. Sections cover fundamentals and emerging trends of plasmonic materials development, including synthesis strategies (chemical and physical) and optical characterization techniques. Next, the book addresses fundamentals, properties, remaining barriers for commercial translation, and the latest advances and opportunities for conventional noble metal plasmonic materials. Fundamentals and advances for alternative plasmonic materials are also reviewed, including two-dimensional hybrid materials composed of graphene, monolayer transition metal dichalcogenides, boron nitride, etc. In addition, other sections cover applications of plasmonic metastructures enabled by plasmonic materials with improved material properties and newly discovered functionalities. Applications reviewed include quantum plasmonics, topological plasmonics, chiral plasmonics, nanolasers, imaging (metalens), active, and integrated technologies.
Hybrid Nanomaterials for Sustainable Applications: Case Studies and Applications brings together the latest advances in hybrid nanocomposites and their diverse applications for improved sustainability. The book begins by introducing hybrid nanomaterials, synthesis strategies, and approaches to production for engineering applications. Subsequent sections provide chapters on key application areas, including water purification, nanobiotechnologies, energy storage, and biomedicine, presenting approaches for sustainable application for each usage. Throughout the book, key challenges are addressed, with case studies used to support implementation and improve end applications. This is a valuable resource for researchers and advanced students in nanotechnology, polymer science, sustainable materials, chemistry, chemical engineering, environmental science, and materials engineering, as well as industrial scientists, engineers, and R&D professionals with an interest in hybrid nanomaterials for a range of applications.
Fundamentals of Sensor Technology: Principles and Novel Designs presents an important reference on the materials, platforms, characterization and fabrication methods used in the development of chemical sensor technologies. Sections provide the historical context of sensor technology development, review principles for the design of sensing devices and circuits, delve into the most common chemical and biological sensor types, cover unique properties and performance requirements, discuss fabrication techniques, including defining critical parameters, modeling and simulation strategies, and present important materials categories used in sensing applications, such as nanomaterials, quantum dots, magnetic materials, and more. This book is appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies, including materials scientists and engineers, analytical chemists and other related disciplines.
BSIM-Bulk Mosfet Model for Wireless and Mixed-Mode ICs provides in-depth knowledge of the internal operation of the model. The authors not only discuss the fundamental core of the model, but also provide details of the recent developments and new real-device effect models. In addition, the book covers the parameter extraction procedures, addressing geometrical scaling, temperatures, and more. There is also a dedicated chapter on extensive quality testing procedures and experimental results. This book discusses every aspect of the model in detail, and hence will be of significant use for the industry and academia. Those working in the semiconductor industry often run into a variety of problems like model non-convergence or non-physical simulation results. This is largely due to a limited understanding of the internal operations of the model as literature and technical manuals are insufficient. This also creates huge difficulty in developing their own IP models. Similarly, circuit designers and researcher across the globe need to know new features available to them so that the circuits can be more efficiently designed.
The Electrocaloric Effect: Materials and Applications reviews the fundamentals of the electrocaloric effect, the most relevant electrocaloric materials, and electrocaloric measurements and device applications. The book introduces the electrocaloric effect, along with modeling and simulations of this effect. Then, it addresses the latest advances in synthesis, characterization and optimization of the most relevant electrocaloric materials, including ferroelectric materials, liquid materials, lead-free materials, polymers and composites. Finally, there is a review of the latest techniques in measurement and applications in refrigeration and cooling and a discussion of the advantages, challenges and perspectives of the future of electrocaloric refrigeration.
Advances in Imaging and Electron Physics, Volume 226 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. Chapters in this release cover Characterization of nanomaterials properties using FE-TEM, Cold field-emission electron sources: From higher brightness to ultrafast beams, Every electron counts: Towards the development of aberration optimized and aberration corrected electron sources, and more. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
The Designer's Guide to the Cortex-M Microcontrollers, Third Edition provides an easy-to-understand introduction to the concepts required to develop programs in C with a Cortex-M based microcontroller. Sections cover architectural descriptions that are supported with practical examples, enabling readers to easily develop basic C programs to run on the Cortex-M0/M0+/M3 and M4 and M7 and examine advanced features of the Cortex architecture, such as memory protection, operating modes and dual stack operation. Final sections examine techniques for software testing and code reuse specific to Cortex-M microcontrollers. Users will learn the key differences between the Cortex-M0/M0+/M3 and M4 and M7; how to write C programs to run on Cortex-M based processors; how to make the best use of the CoreSight debug system; the Cortex-M operating modes and memory protection; advanced software techniques that can be used on Cortex-M microcontrollers, and much more.
Metal Oxide Defects: Fundamentals, Design, Development and Applications provides a broad perspective on the development of advanced experimental techniques to study defects and their chemical activity and catalytic reactivity in various metal oxides. This book highlights advances in characterization and analytical techniques to achieve better understanding of a wide range of defects, most importantly, state-of-the-art methodologies for controlling defects. The book provides readers with pathways to apply basic principles and interpret the behavior of metal oxides. After reviewing characterization and analytical techniques, the book focuses on the relationship of defects to the properties and performance of metal oxides. Finally, there is a review of the methods to control defects and the applications of defect engineering for the design of metal oxides for applications in optoelectronics, energy, sensing, and more. This book is a key reference for materials scientists and engineers, chemists, and physicists.
Coulomb Interactions in Particle Beams, Volume 223 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and computing methods used in all these domains, with this release exploring Coulomb Interactions in Particle Beams.
Metal Oxide-Based Heterostructures: Fabrication and Applications provides information on synthesis strategies, structural and hierarchical features, morphological characteristics of metal oxide-based heterostructures, and their diverse applications. This book begins with an introduction to the various multidimensional heterostructures, synthesis aspects, and techniques used to control the formation of heterostructures. Then, the impact of synthesis routes on the formation of mixed metal oxide heterostructures and their properties are analyzed. The effect of nonmetal doping, metal doping, and composites of metal oxide heterostructures on the properties of heterostructures is also addressed and that also includes opportunities for optimization of the material's performance for specific applications. Special attention is given to the surface characteristics of the metal oxide heterostructures and their impact on the material's performance, and the applications of metal oxide heterostructures in various fields such as environmental remediation, sensing, organic catalysis, photovoltaics, light emitting materials, and hydrogen production.
Nanotechnology-Based E-Noses: Fundamentals and Emerging Applications reviews advances in nanomaterials and their modification for use in e-sensors. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered, as are the most relevant nanomaterials, their synthesis strategies and the relationship between properties and device performance. Current state-of-the-art progress in nanotechnology device fabrication, along with directions for future applications and challenges are also discussed. This book will be an ideal resource for materials scientists, engineers, chemists, researchers in academia and R&D in industry. Recently, "e-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance these materials depend on several factors such as morphology, dopants, micro-additives, design of sensors, phase and structure of the nanomaterials.
Advances in Electronic Materials for Clean Energy Conversion and Storage Applications reviews green synthesis and fabrication techniques of various electronic materials and their derivatives for applications in photovoltaics. The book investigates recent advances, progress and issues of photovoltaic-based research, including organic, hybrid, dye-sensitized, polymer, and quantum dot-based solar cells. There is a focus on applications for clean energy and storage in the book. Clean energy is defined as energy derived from renewable resources or zero-emission sources and natural processes that are regenerative and sustainable resources such as biomass, geothermal energy, hydropower, solar and wind energy. Materials discussed include nanomaterials, nanocomposites, polymers, and polymer-composites. Advances in clean energy conversion and energy storage devices are also reviewed thoroughly based on recent research and developments such as supercapacitors, batteries etc. Reliable methods to characterize and analyze these materials systems and devices are emphasized throughout the book. Important information on synthesis and analytical chemistry of these important systems are reviewed, but also material science methods to investigate optical properties of carbon-nanomaterials, metal oxide nanomaterials and their nanocomposites.
Thermally Conductive Polymer Composites provides an important introduction to the key principles, methods, and research directions of this emerging thermal management material category. This book introduces thermal conduction, measurement methods, thermal conduction mechanisms, and related theories. It also reviews classification and processing techniques which impact thermal conductivity performance. Thermally conductive composites discussed include intrinsically thermally conductive polymers, thermally conductive fillers, and thermally conductive polymer composites. Furthermore, the interfacial thermal resistance is thoroughly explained including basic concepts, theoretical research, and characterization. Finally, the practical applications of thermally conductive polymer composites are illustrated such as thermally conductive plastics, thermally conductive rubbers, and thermally conductive adhesives.
Semiconductors and Semimetals, Volume 111 highlights new advances in the field, with this new volume presenting interesting chapters on Precision Medicine. Each chapter is written by an international board of authors.
Metallic Glasses and Their Oxidation provides a comprehensive review of the structures, properties, preparations, processing and applications of metallic glasses. Special attention is paid to the oxidation behaviors and related mechanisms of metallic glasses that occur during their preparation, processing and application. The book's authors introduce basic knowledge of metallic glasses, including their structures, properties, processing techniques and applications. Then, the theories and techniques commonly used in oxidation investigation are highlighted, including thermal oxidation, native oxidation, stressed oxidation, powder oxidation and oxidation simulation. The book closes with the influence of oxidation on the structures and performances of metallic glasses, proposes measures to control oxidation, and discusses how to take advantage of oxidation to reinforce materials or create new materials. |
![]() ![]() You may like...
Xenes - 2D Synthetic Materials Beyond…
Alessandro Molle, Carlo Grazianetti
Paperback
R4,737
Discovery Miles 47 370
Advances in Imaging and Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
Electrochemical Sensors - From Working…
Giuseppe Maruccio, Jagriti Narang
Paperback
R4,213
Discovery Miles 42 130
Conjugated Polymers for Next-Generation…
Vijay Kumar, Kashma Sharma, …
Paperback
R5,391
Discovery Miles 53 910
Graphene Oxide-Metal Oxide and other…
Jiaguo Yu, Liuyang Zhang, …
Paperback
R4,829
Discovery Miles 48 290
Conjugated Polymers for Next-Generation…
Vijay Kumar, Kashma Sharma, …
Paperback
R5,391
Discovery Miles 53 910
Quantum Materials, Devices, and…
Mohamed Henini, Marcelo Oliveira Rodrigues
Paperback
R5,217
Discovery Miles 52 170
Semiconductor Memories and Systems
Andrea Redaelli, Fabio Pellizzer
Paperback
R4,213
Discovery Miles 42 130
|