![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices.
Encyclopedia of Materials: Electronics, Three Volume Set provides a compilation on all aspects of electronic materials and devices, i.e., their science, engineering and technology. As electronic materials are integrated into numerous devices and widely used in almost all sectors, including information and communication technology, automation and control, robotics, manufacturing, process industries, instrumentation, energy and power systems, healthcare, and defense and security, this book is an ideal reference. This area of science will play an influential role in the future. In addition, given the rapid expansion of publications in this field, the compilation of definitive reviews of this kind is especially important and invaluable. The study of electronic materials is truly multidisciplinary, therefore the contributors to, and the audience for, this work will be from the fields of materials science, engineering, physics and chemistry. This title will provide users with a single and unique reference source for fundamental and applied research in electronic materials, incorporating elements from many different disciplines and applications. The work will be an invaluable resource for libraries in universities, research organizations, and manufacturing and technology companies.
Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries — the chiral multifold fermions — that can be understood as a higher-spin generalization of Weyl fermions. This work provides a complete description of all chiral multifold fermions, studying their topological properties and the k·p models describing them. We compute the optical conductivity of all chiral multifold fermions and establish their optical selection rules. We find that the activation frequencies are different for each type of multifold fermion, thus constituting an experimental fingerprint for each type of multifold fermion. Building on the theoretical results obtained in the first part of our analysis, we study two chiral multifold semimetals: RhSi and CoSi. We analyze the experimental results with k·p and tight-binding models based on the crystal symmetries of the material. We trace back the features observed in the experimental optical conductivity to the existence of multifold fermions near the Fermi level and estimate the chemical potential and the scattering lifetime in both materials. Finally, we provide an overview of second-order optical responses and study the second-harmonic generation of RhSi. We find a sizeable second-harmonic response in the low-energy regime associated with optical transitions between topological bands. However, this regime is extremely challenging to access with the current experimental techniques. We conclude by providing an overview of the main results, highlighting potential avenues to further research on chiral multifold semimetals and the future of optical responses as experimental probes to characterize topological phases.
Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices.
Piezoelectric materials produce electric charges on their surfaces as a consequence of applying mechanical stress. They are used in the fabrication of a growing range of devices such as transducers (used, for example, in ultrasound scanning), actuators (deployed in such areas as vibration suppression in optical and microelectronic engineering), pressure sensor devices (such as gyroscopes) and increasingly as a way of producing energy. Their versatility has led to a wealth of research to broaden the range of piezoelectric materials and their potential uses. Advanced piezoelectric materials: science and technology provides a comprehensive review of these new materials, their properties, methods of manufacture and applications. After an introductory overview of the development of piezoelectric materials, Part one reviews the various types of piezoelectric material, ranging from lead zirconate titanate (PZT) piezo-ceramics, relaxor ferroelectric ceramics, lead-free piezo-ceramics, quartz-based piezoelectric materials, the use of lithium niobate and lithium in piezoelectrics, single crystal piezoelectric materials, electroactive polymers (EAP) and piezoelectric composite materials. Part two discusses how to design and fabricate piezo-materials with chapters on piezo-ceramics, single crystal preparation techniques, thin film technologies, aerosol techniques and manufacturing technologies for piezoelectric transducers. The final part of the book looks at applications such as high-power piezoelectric materials and actuators as well as the performance of piezoelectric materials under stress. With its distinguished editor and international team of expert contributors Advanced piezoelectric materials: science and technology is a standard reference for all those researching piezoelectric materials and using them to develop new devices in such areas as microelectronics, optical, sound, structural and biomedical engineering.
Unlike electroplating, electroless plating allows uniform deposits of coating materials over all surfaces, regardless of size, shape and electrical conductivity. Electroless copper and nickel-phosphorus deposits provide protective and functional coatings in industries as diverse as electronics, automotive, aerospace and chemical engineering. This book discusses the latest research in electroless depositions. After an introductory chapter, part one focuses on electroless copper depositions reviewing such areas as surface morphology and residual stress, modelling surface structure, adhesion strength of electroless copper deposit, electrical resistivity and applications of electroless copper deposits. Part two goes on to look at electroless nickel-phosphorus depositions with chapters on the crystallisation of nickel-phosphorus deposits, modelling the thermodynamics and kinetics of crystallisation of nickel-phosphorus deposits, artificial neural network (ANN) modelling of crystallisation temperatures, hardness evolution of nickel-phosphorus deposits and applications of electroless nickel-phosphorus plating. Written by leading experts in the field Electroless copper and nickel-phosphorus plating: Processing, characterisation and modelling is an invaluable guide for researchers studying electroless deposits or materials science as well as for those working in the chemical, oil and gas, automotive, electronics and aerospace industries.
Whilst printed films are currently used in varied devices across a wide range of fields, research into their development and properties is increasingly uncovering even greater potential. Printed films provides comprehensive coverage of the most significant recent developments in printed films and their applications. Materials and properties of printed films are the focus of part one, beginning with a review of the concepts, technologies and materials involved in their production and use. Printed films as electrical components and silicon metallization for solar cells are discussed, as are conduction mechanisms in printed film resistors, and thick films in packaging and microelectronics. Part two goes on to review the varied applications of printed films in devices. Printed resistive sensors are considered, as is the role of printed films in capacitive, piezoelectric and pyroelectric sensors, mechanical micro-systems and gas sensors. The applications of printed films in biosensors, actuators, heater elements, varistors and polymer solar cells are then explored, followed by a review of screen printing for the fabrication of solid oxide fuel cells and laser printed micro- and meso-scale power generating devices. With its distinguished editors and international team of expert contributors, Printed films is a key text for anyone working in such fields as microelectronics, fuel cell and sensor technology in both industry and academia.
Electrical motor products reviews the energy efficiency management laws for electrical motor products in United States, European Union (EU) and China. The energy efficiency certification requirements for the electrical motor products vary from country to country and are summarised here. International standards, testing methods and certification requirements for specific electrical motor products are discussed, including electric motors, pumps and fans. Finally, methods for improving energy efficiency are examined.
Adhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic adhesives, with chapters covering the structural integrity of metal-polymer adhesive interfaces, modelling techniques used to assess adhesive properties and adhesive technology for photonics. With its distinguished editors and international team of contributors, Advanced adhesives in electronics is a standard reference for materials scientists, engineers and chemists using adhesives in electronics, as well as those with an academic research interest in the field.
Nanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and modelling. Part three covers the material properties of SiGe nanostructures, including chapters on such topics as strain-induced defects, transport properties and microcavities and quantum cascade laser structures. In Part four, devices utilising SiGe alloys are discussed. Chapters cover ultra large scale integrated applications, MOSFETs and the use of SiGe in different types of transistors and optical devices. With its distinguished editors and team of international contributors, Silicon-germanium (SiGe) nanostructures is a standard reference for researchers focusing on semiconductor devices and materials in industry and academia, particularly those interested in nanostructures.
The rheological properties of magnetorheological (MR) materials, such as their viscosity and dynamic modulus, can be tuned or controlled by changing the intensity of the magnetic field using appropriate control schemes. Thanks to their robustness, performance and smart properties, numerous studies have been undertaken on the development of new MR materials, and microscopic and macroscopic modelling approaches. Novel applications include engine mounts and clutch systems in the automotive industry, shock absorbing safety devices for cockpit seats in aerospace, and shock absorption from movement in semi-active human prosthetic legs. This book introduces magnetorheological fluids and elastomers, and explores their material properties, related modelling techniques and applications in turn. The book offers insights into the relationships between the properties and characterisation of MR materials and their current and future applications, making it useful reading for researchers, engineers and graduate students who work in the field of smart materials and structures.
Recently, a new digital twin consortium has been established that aims to deploy digital twin technology in new markets as well as in the development of smart cities. Designing smart cities, smart communities, and smart ecosystems powered by optimal digital twin deployments is a vision that currently only futurists can entertain and requires some time to reach large-scale adoption. However, it is incumbent upon us as a society to educate and train future generations on how to leverage digital twin technologies in order to optimize our daily lives as well as increase our efficiency, productivity, and safety. Impact of Digital Twins in Smart Cities Development provides insights regarding the global landscape for current digital twin research and deployments and highlights some of the challenges and opportunities faced during large-scale adoptions. Critical domains such as ethics, data governance, cybersecurity, inclusion, diversity, and sustainability are also addressed and considered. Covering topics such as digital identity and digital economics, this reference work is ideal for urban planners, engineers, policymakers, industry leaders, scientists, economists, academicians, practitioners, researchers, instructors, and students.
Today, air-to-surface vessel (ASV) radars, or more generally maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW - Air to Surface Warfare) and for hunting submarines (ASW - anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U-Boats. This book describes the ASV radars developed in the UK after WWII (1946-2000) and used by the RAF for long-range maritime surveillance.
This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.
This book reviews the state of the art in the use of organic materals as physical, chemical and biomedical sensors in a variety of application settings. Topics covered include organic semiconductors for chemical and physical sensing; conducting polymers in sensor applications; chemically functionalized organic semiconductors for highly selective sensing; composite organic-inorganic sensors; artificial skin applications; organic thin film transistor strain gauges for biomedical applications; OTFT infrared sensors for touchless human-machine interaction; smart fabric sensors and e-textile technologie; image capture with organic sensors; organic gas sensors and electronic noses; electrolyte gated organic transistors for bio-chemical sensing; ion-selective organic electrochemical transistors; DNA biosensors; metabolic organic sensors; and conductive polymer based sensors for biomedical applications.
Today, air-to-surface vessel (ASV) radars, or more generally airborne maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW--anti-surface warfare) and for hunting submarines (ASW--anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U boats. This book describes the ASV radars developed in the UK and used by RAF Coastal Command during WWII for long-range maritime surveillance.
This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.
This book covers a broad range of topics from the interdisciplinary research field of ultrafast intense laser science, focusing on atoms and molecules interacting with intense laser fields, laser-induced filamentation, high-order harmonics generation, and high power lasers and their applications. This sixteenth volume features contributions from world-renowned researchers, introducing the latest reports on probing molecular chirality with intense laser fields, and the most recent developments in the Shanghai Superintense Ultrafast Laser Facility project. The PUILS series delivers up-to-date reviews of progress in this emerging interdisciplinary research field, spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each of their own subfields of ultrafast intense laser science. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, especially graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
Microelectronics is a challenging course to many undergraduate students and is often described as very messy.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics. |
![]() ![]() You may like...
Conjugated Polymers for Next-Generation…
Vijay Kumar, Kashma Sharma, …
Paperback
R5,391
Discovery Miles 53 910
Conjugated Polymers for Next-Generation…
Vijay Kumar, Kashma Sharma, …
Paperback
R5,391
Discovery Miles 53 910
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Mems for Automotive and Aerospace…
Michael Kraft, Neil M. White
Hardcover
R4,293
Discovery Miles 42 930
The Electrocaloric Effect - Materials…
Andrei L. Kholkin, Oleg V. Pakhomov, …
Paperback
R5,367
Discovery Miles 53 670
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,374
Discovery Miles 53 740
|