![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won't want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.
Composite insulators have been in service in electric power networks successfully for more than 40 years, and now up to the highest operating voltages. The present book extensively covers such insulators with a special focus on today's prevalent material, which is silicone rubber. It includes a detailed description of the electrical and mechanical characteristics of composite insulators, their material properties, their design as well as typical applications and service experience. Particular attention is given to the mechanical behavior of long rod and post insulators, insulated cross-arms, interphase spacers and hollow core apparatus insulators. The state of the art on manufacturing procedures and the selection and dimensioning of the necessary power arc and corona fittings is presented as well as evaluation tests of "old" insulators, i.e. insulators after many years in service. The closing chapter deals with an up to date overview of test procedures and IEC standards. The selection and the contents of the various subjects covered in this book are based on the authors' more than thirty years of experience with a renowned European manufacturer of composite insulators and string hardware. Their long and active participation in the relevant CIGRE and IEC working bodies adding to this experience. This book is therefore addressed to practicing engineers from electric utilities and the industry, as well as to academic professionals.
This book is intended to give an overview on the latest SAW technologies such as design and simulation of resonator-based devices employing the SH-type leaky SAW. Although various theoretical backgrounds relevant for simulation and design techniques are explained in detail the mathematics of the description was kept as simple as possible.
Piezoresistor Design and Applications provides an overview of these MEMS devices and related physics. The text demonstrates how MEMS allows miniaturization and integration of sensing as well as efficient packaging and signal conditioning. This text for engineers working in MEMS design describes the piezoresistive phenomenon and optimization in several applications. Includes detailed discussion of such topics as; coupled models of mechanics, materials and electronic behavior in a variety of common geometric implementations including strain gages, beam bending, and membrane loading. The text concludes with an up-to-date discussion of the need for integrated MEMS design and opportunities to leverage new materials, processes and MEMS technology. Piezoresistor Design and Applications is an ideal book for
design engineers, process engineers and researchers.
This book presents a collection of extended contributions on the physics and application of optoelectronic materials and metamaterials. The book is divided into three parts, respectively covering materials, metamaterials and optoelectronic devices. Individual chapters cover topics including phonon-polariton interaction, semiconductor and nonlinear organic materials, metallic, dielectric and gyrotropic metamaterials, singular optics, parity-time symmetry, nonlinear plasmonics, microstructured optical fibers, passive nonlinear shaping of ultrashort pulses, and pulse-preserving supercontinuum generation. The book contains both experimental and theoretical studies, and each contribution is a self-contained exposition of a particular topic, featuring an extensive reference list. The book will be a useful resource for graduate and postgraduate students, researchers and engineers involved in optoelectronics/photonics, quantum electronics, optics, and adjacent areas of science and technology.
This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). It introduces the small-signal equivalent circuit of SiGe HBTs including the distributed effects, and proposes a novel direct analytical extraction technique based on non-linear rational function fitting. It also presents the total dose effects irradiated by gamma rays and heavy ions, as well as the single-event transient induced by pulse laser microbeams. It offers readers essential information on the irradiation effects technique and the SiGe HBTs model using that technique.
This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.
Test functions (fault detection, diagnosis, error correction, repair, etc.) that are applied concurrently while the system continues its intended function are defined as on-line testing. In its expanded scope, on-line testing includes the design of concurrent error checking subsystems that can be themselves self-checking, fail-safe systems that continue to function correctly even after an error occurs, reliability monitoring, and self-test and fault-tolerant designs. On-Line Testing for VLSI contains a selected set of articles that discuss many of the modern aspects of on-line testing as faced today. The contributions are largely derived from recent IEEE International On-Line Testing Workshops. Guest editors Michael Nicolaidis, Yervant Zorian and Dhiraj Pradhan organized the articles into six chapters. In the first chapter the editors introduce a large number of approaches with an expanded bibliography in which some references date back to the sixties. On-Line Testing for VLSI is an edited volume of original research comprising invited contributions by leading researchers.
This impressive thesis offers a comprehensive scientific study of the alkaline earth niobates and describes their nonlinear optical properties for the first time. It explores the crystal structure, electrical properties, optical absorption properties, hot carrier dynamics, nonlinear optical property and strain-induced metal to insulator transition of alkaline earth niobates using advanced experimental techniques. These alkaline earth niobates can have a strong plasmon resonance in the visible range due to their large carrier density, and this unique property gives rise to the emergent phenomenon of photocatalysis and nonlinear optical properties. This series of intrinsic plasmonic materials based on niobates, can be used as a photocatalyst to split water under sunlight, a novel saturable absorber in the high-power ultrashort pulsed laser system, and as a sensor in microelectromechanical systems.
Traditional Wireless Sensor Networks (WSNs) have tremendous applications, but their performance can be limited due to the limited processing and communication power of wireless sensor nodes. Cognitive Radio Sensor Networks: Applications, Architectures, and Challenges examines how wireless sensor nodes with cognitive radio capabilities can address these challenges and improve the spectrum utilization. This premier reference work presents a broader picture on the applications, architecture, challenges, and open research directions in the area of WSN research. It serves as a reference book for graduate students in courses on topics such as wireless sensor networks, cognitive radio networks, and emerging wireless technologies.
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events - both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrashort pulses in metrology and quantum control. Chapters 8 and 9 are concerned with ultrafast nonlinear optics in optical fibres. Chapters 10 to 13 are concerned with the applications of ultrashort pulses in areas such as particle acceleration, microscopy, and micromachining. The chapters are aimed at graduate-student level and are intended to provide the student with an accessible, self-contained and comprehensive gateway into each subject.
Wen-Dan Cheng, Chen-Sheng Lin, Wei-Long Uhang, Hao Zhang: Structural Designs and Property Characterizations for Second-Harmonic Generation Materials.- Fang Kong, Chuan-Fu Sun, Bing-Ping Yang, Jiang-Gao Mao: Second-order Non-linear Optical Materials based on Metal Iodates, Selenites and Tellurites.- Guo-Fu Wang: Structure, growth, nonlinear optics and laser properties of RX3(BO3)4 (R=Y, Gd, La; X=Al, Sc).- Chaoyang Tu, Zhaojie Zhu, Zhenyu You, Jianfu Li, Yan Wang, Alain Brenier: The Recent Development of Borate SF-conversion Laser Crystal.- Ning Ye: Structure design and crystal growth of UV nonlinear borate materials.- Yi-Zhi Huang, Li-Ming Wu, Mao-Chun Hong: Cation Effect in Doped BBO and Halogen Anion Effect in Pb2B5O9X (X = I, Br, Cl )."
This monograph is written for neophytes, students, and practitioners to aid in their understanding of single event phenomena. It attempts to collect the highlights as well as many of the more detailed aspects of this field into an entity that portrays the theoretical as well as the practical applications of this subject. Those who claim that "theory" is not for them can skip over the earlier chapters dealing with the fundamental and theoretical portions and find what they need in the way of hands-on guidelines and pertinent formulas in the later chapters. Perhaps, after a time they will return to peruse the earlier chapters for a more complete rendition and appreciation of the subject matter. It is felt that the reader should have some acquaintance with the electronics of semiconductors and devices, some broad atomic physics introduction, as well as a respectable level of mathematics through calculus, including simple differential equations. A large part of the preceding can be obtained informally, through job experience, self-study, evening classes, as well as from a formal college curriculum.
This is the first book to comprehensively address the recent developments in both the experimental and theoretical aspects of quasi-one-dimensional halogen-bridged mono- (MX) and binuclear metal (MMX) chain complexes of Pt, Pd and Ni. These complexes have one-dimensional electronic structures, which cause the various physical properties as well as electronic structures. In most MX-chain complexes, the Pt and Pd units are in M(II)-M(IV) mixed valence or charge density wave (CDW) states due to electron-phonon interactions, and Ni compounds are in Ni(III) averaged valence or Mott-Hubbard states due to the on-site Coulomb repulsion. More recently, Pd(III) Mott-Hubbard (MH) states have been realized in the ground state by using the chemical pressure. Pt and Pd chain complexes undergo photo-induced phase transitions from CDW to MH or metal states, and Ni chain complexes undergo photo-induced phase transitions from MH to metal states. Ni chain complexes with strong electron correlations show tremendous third-order optical nonlinearity and nonlinear electrical conductivities. They can be explained theoretically by using the extended Peierls-Hubbard model. For MMX-chain complexes, averaged valence, CDW, charge polarization, and alternating charge polarization states have been realized by using chemical modification and external stimuli, such as temperature, photo-irradiation, pressure, and water vapor. All of the electronic structures and phase transitions can be explained theoretically.
Moisture Sensitivity of Plastic Packages of IC Devices provides information on the state-of-the-art techniques and methodologies related to moisture issues in plastic packages. The most updated, in-depth and systematic technical and theoretical approaches are addressed in the book. Numerous industrial applications are provided, along with the results of the most recent research and development efforts, including, but not limited to: thorough exploration of moisture's effects based on lectures and tutorials by the authors, consistent focus on solution-based approaches and methodologies for improved reliability in plastic packaging, emerging theories and cutting-edge industiral applications presented by the leading professionals in the field. Moisture plays a key role in the reliability of plastic packages of IC devices, and moisture-induced failures have become an increasing concern with the development of advanced IC devices. This second volume in the Micro- and Opto-Electronic Materials, Structures, and Systems series is a must-read for researchers and engineers alike.
Electronics for Service Engineers is the first text designed
specifically for the Level 2 NVQs in Electronics Servicing. It
provides the underpinning knowledge required by brown goods and
white goods students, reflecting the popularity of the EMTA white
goods NVQs. It has also been written in the light of the new EEB /
City & Guilds Level 2 progression award (RVQ) for brown goods
and commercial electronics, dubbed 'son of 2240', and the existing
2240 part 1.
This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book."
Written as a companion to the highly acclaimed Transformer and Inductor Design Handbook, Second Edition (Marcel Dekker, Inc.), this timely new edition of Magnetic Core Selection for Transformers and Inductors compiles the specifications of over 12,000 industrially available cores and brings them in line with standard units of measurements-simplifying the selection of core configurations for the design of magnetic components.
This thesis focuses on the growth of a new type of two-dimensional (2D) material known as hexagonal boron nitride (h-BN) using chemical vapor deposition (CVD). It also presents several significant breakthroughs in the authors' understanding of the growth mechanism and development of new growth techniques, which are now well known in the field. Of particular importance is the pioneering work showing experimental proof that 2D crystals of h-BN can indeed be hexagonal in shape. This came as a major surprise to many working in the 2D field, as it had been generally assumed that hexagonal-shaped h-BN was impossible due to energy dynamics. Beyond growth, the thesis also reports on synthesis techniques that are geared toward commercial applications. Large-area aligned growth and up to an eightfold reduction in the cost of h-BN production are demonstrated. At present, all other 2D materials generally use h-BN as their dielectric layer and for encapsulation. As such, this thesis lays the cornerstone for using CVD 2D h-BN for this purpose.
This work covers the chemistry and physics of polymeric materials and their uses in the fields of electronics, photonics, and biomedical engineering. It discusses the relationship between polymeric supermolecular structures and ferroelectric, piezoelectric and pyroelectric properties.
Fault Covering Problems in Reconfigurable VLSI Systems describes the authors' recent research on reconfiguration problems for fault-tolerance in VLSI and WSI Systems. The book examines solutions to a number of reconfiguration problems. Efficient algorithms are given for tractable covering problems and general techniques are given for dealing with a large number of intractable covering problems. The book begins with an investigation of algorithms for the reconfiguration of large redundant memories. Next, a number of more general covering problems are considered and the complexity of these problems is analyzed. Finally, a general and uniform approach is proposed for solving a wide class of covering problems. The results and techniques described here will be useful to researchers and students working in this area. As such, the book serves as an excellent reference and may be used as the text for an advanced course on the topic.
This book, the first of its kind, bridges the gap between the increasingly interlinked fields of nanophotonics and artificial intelligence (AI). While artificial intelligence techniques, machine learning in particular, have revolutionized many different areas of scientific research, nanophotonics holds a special position as it simultaneously benefits from AI-assisted device design whilst providing novel computing platforms for AI. This book is aimed at both researchers in nanophotonics who want to utilize AI techniques and researchers in the computing community in search of new photonics-based hardware. The book guides the reader through the general concepts and specific topics of relevance from both nanophotonics and AI, including optical antennas, metamaterials, metasurfaces, and other photonic devices on the one hand, and different machine learning paradigms and deep learning algorithms on the other. It goes on to comprehensively survey inverse techniques for device design, AI-enabled applications in nanophotonics, and nanophotonic platforms for AI. This book will be essential reading for graduate students, academic researchers, and industry professionals from either side of this fast-developing, interdisciplinary field.  |
You may like...
Mems for Automotive and Aerospace…
Michael Kraft, Neil M. White
Hardcover
R4,041
Discovery Miles 40 410
The Beginnings of Electron Microscopy…
Peter W. Hawkes, Martin Hytch
Hardcover
R5,265
Discovery Miles 52 650
Plasmonic Materials and Metastructures…
Shangjr Gwo, Andrea Alù, …
Paperback
R4,940
Discovery Miles 49 400
Metal Oxide Defects - Fundamentals…
Vijay Kumar, Sudipta Som, …
Paperback
R5,032
Discovery Miles 50 320
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
|