![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
* Guides readers into more detailed and technical treatments of readout optical signals * Gives a broad overview of optical signal detection including terahertz region and two-dimensional material * Helps readers further their studies by offering chapter-end problems and recommended reading.
This highly interdisciplinary thesis reports on two innovative photonic biosensors that combine multiple simultaneous measurements to provide unique insights into the activity and structure of surface immobilized biological molecules. In addition, it presents a new silicon photonic biosensor that exploits two cascaded resonant sensors to provide two independent measurements of a biological layer immobilized on the surface. By combining these two measurements, it is possible to unambiguously quantify the density and thickness of the molecular layer; here, the approach's ability to study molecular conformation and conformational changes in real time is demonstrated. The electrophotonic biosensor integrates silicon photonics with electrochemistry into a single technology. This multi-modal biosensor provides a number of unique capabilities that extend the functionality of conventional silicon photonics. For example, by combining the complementary information revealed by simultaneous electrochemical and photonic measurements, it is possible to provide unique insights into on-surface electrochemical processes. Furthermore, the ability to create electrochemical reactions directly on the silicon surface provides a novel approach for engineering the chemical functionality of the photonic sensors. The electrophotonic biosensor thus represents a critical advance towards the development of very high-density photonic sensor arrays for multiplexed diagnostics.
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: "Where does transformation electromagnetics come from?," "What are the general material properties for different classes of coordinate transformations?," "What are the limitations and challenges of device realizations?," and "What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?" The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
Covers novel semiconductor devices with sub-micron dimensions. Discusses comprehensive device optimization techniques. Examines the conceptualization and modeling of semiconductor devices. Covers circuit and sensor-based application of the novel devices. Discusses novel materials for next-generation devices.
Covers all emergent materials (natural and artificial) that are promising for optical, infrared, and terahertz applications Comparatively analyzes these materials, elucidating their unique advantages, limitations, and application scopes Provides an up-to-date record on achievements and progress in cutting-edge optical, infrared, and terahertz applications Offers a comprehensive overview to connect multidisciplinary fields, such as materials, physics, and optics, to serve as a basis for future progress
Details the use of advanced AFMs and addresses all types of functional AFMs First book to focus on application of AFM for energy research Enables readers to operate an AFM successfully and to understand the data obtained Covers new achievements in AFM instruments, including higher speed and resolution, automatic and deep learning AFM, and how AFM is being combined with other new methods like IR and Raman microscopy
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
Polymer electrolytes are electrolytic materials that are widely used in batteries, fuel cells and other applications such as supercapacitors, photoelectrochemical and electrochromic devices. Polymer electrolytes: Fundamentals and applications provides an important review of this class of ionic conductors, their properties and applications. Part one reviews the various types of polymer electrolyte compounds, with chapters on ceramic polymer electrolytes, natural polymer-based polymer electrolytes, composite polymer electrolytes, lithium-doped hybrid polymer electrolytes, hybrid inorganic-organic polymer electrolytes. There are also chapters on ways of characterising and modelling polymer electrolytes. Part two discusses applications such as solar cells, supercapacitors, electrochromic and electrochemical devices, fuel cells and batteries. With its distinguished editors and international team of contributors, Polymer electrolytes: Fundamentals and applications is a standard reference for all those researching and using polymer electrolytes in such areas as battery and fuel cell technology for automotive and other applications.
Semiconductors with optical characteristics have found widespread use in evolving semiconductor photovoltaics, where optical features are important. The industrialization of semiconductors and their allied applications have paved the way for optical measurement techniques to be used in new ways. Due to their unique properties, semiconductors are key components in the daily employed technologies in healthcare, computing, communications, green energy, and a range of other uses. This book examines the fundamental optical properties and applications of semiconductors. It summarizes the information as well as the optical characteristics and applicability of semiconductors through an in-depth review of the literature. Accomplished experts in the field share their knowledge and examine new developments. FEATURES Comprehensive coverage of all types of optical applications using semiconductors Explores relevant composite materials and devices for each application Addresses the optical properties of crystalline and amorphous semiconductors Describes new developments in the field and future potential applications Optical Properties and Applications of Semiconductors is a comprehensive reference and an invaluable resource for engineers, scientists, academics, and industry R&D teams working in applied physics.
Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new commercial devices ranging, for example, from integrated pressure and acceleration microsensors to active micromirror arrays for image projection. In the near future, there will be a number of new devices, which will be commercialized in many application areas. The field of microsystems is characterized by its wide diversity, which requires a multidisciplinary approach for design and processes as well as in application areas. Although there is a common technological background derived from integrated circuits, it is clear that microsystems will require additional application-specific technologies. Since most microsystem technologies are based on batch processing and dedicated to mass production, prototyping is likely to be an expensive and time-consuming step. It is recognized that standardization of the processes as well as of the design tools will definitely help reduce the entry cost of microsystems. This creates a very challenging situation for the design, modeling and simulation of microsystems. Methodology for the Modeling and Simulation of Microsystems is the first book to give an overview of the problems associated with modeling and simulation of microsystems. It introduces a new methodology, which is supported by several examples. It should provide a useful starting point for both scientists and engineers seeking background information for efficient design of microsystems.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.The chapter "Aggregation-Induced Emission In Electrochemiluminescence: Advances and Perspectives" is available open access under a CC BY 4.0 License via link.springer.com.
This book provides a systematical and comprehensive description of some facets of modeling, designing, analyzing and exploring the control allocation and fault-tolerant control problems for over-actuated spacecraft attitude control system under actuator failures, system uncertainties and disturbances. The book intends to provide a unified platform for understanding and applicability of the fault-tolerant attitude control and control allocation for different purposes in aerospace engineering and some related fields. And it is particularly suited for readers who are interested to learn solutions in spacecraft attitude control system design and related engineering applications.
This book characterizes how to design and synthesize nanomaterials of an organic and mineral nature. The book also discusses the visualization of developed nanomaterials and their bio-applications, as well as describes the biomedical effects and environmental impact of nanomaterials. This is an ideal book for students studying biomedicine or the life sciences, as well as researchers and professionals in medicine, environmental protection, biotechnology, agriculture, and the food industry. More specifically, this book addresses the important nanomaterials and nanobiotechnologies that are used in those fields in biomedicine and life sciences.
Highlights Li-ion batteries and Na-ion batteries, as well as lithium sulfur-, aluminum-, and iron-related batteries Describes advanced battery materials and their fundamental properties Addresses challenges to improving battery performance Develops theoretical predictions and experimental observations under a unified quasi-particle framework Targets core issues like stability and efficiencies
Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications. The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided. The reader will: Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition Learn the links and relationship between alternative technologies for robust speech recognition Be able to use the technology analysis and categorization detailed in the book to guide future technology development Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition
Defects in Nanocrystals: Structural and Physico-Chemical Aspects discusses the nature of semiconductor systems and the effect of the size and shape on their thermodynamic and optoelectronic properties at the mesoscopic and nanoscopic levels. The nanostructures considered in this book are individual nanometric crystallites, nanocrystalline films, and nanowires of which the thermodynamic, structural, and optical properties are discussed in detail. The work: Outlines the influence of growth processes on their morphology and structure Describes the benefits of optical spectroscopies in the understanding of the role and nature of defects in nanostructured semiconductors Considers the limits of nanothermodynamics Details the critical role of interfaces in nanostructural behavior Covers the importance of embedding media in the physico-chemical properties of nanostructured semiconductors Explains the negligible role of core point defects vs. surface and interface defects Written for researchers, engineers, and those working in the physical and physicochemical sciences, this work comprehensively details the chemical, structural, and optical properties of semiconductor nanostructures for the development of more powerful and efficient devices.
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Novel Phosphors, Synthesis, and Applications' provides the descriptions of synthesis and optical properties of phosphors used in different applications, including the novel phosphors for some newly developed applications. The chapters in this book cover: Various LED-based phosphors and their synthesis and applications Ingenious integrated smart phosphors and their novel optoelectronic and photonic devices Quantum dot, single crystalline, and glass phosphors Upconversion nanoparticles for super-resolution imaging and photonic and biological applications Special phosphors for laser, OLED, energy storage, quantum cutting, thermometry, photosynthesis, AC-driven LED, and solar cells
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Experimental Methods for Phosphor Evaluation and Characterization' addresses the theoretical and experimental methods for phosphor evaluation and characterization. The chapters in the book cover: First principle and DFT analysis of optical, structural, and chemical properties of phosphors Phosphor design and tuning through structure and solid solution Design for IR, NIR, and narrowband emission and thermally stable phosphors and nanophosphors Detailed illustration for measurement of the absolute photoluminescence quantum yield of phosphors Phosphor analysis through photoionization, high pressure, and synchrotron radiation studies
Nanofabrication is critical to the realization of potential benefits in the field of electronics, bioengineering and material science. One enabling technology in nanofabrication is Tip-Based Nanofabrication, which makes use of functionalized micro-cantilevers with nanoscale tips. Tip-Based Nanofabrication: Fundamentals and Applications discusses the development of cantilevered nanotips and how they evolved from scanning probe microscopy and are able to manipulate environments at nanoscale on substrates generating different nanoscale patterns and structures. Also covered are the advantages of ultra-high resolution capability, how to use tip based nanofabrication technology as a tool in the manufacturing of nanoscale structures, single-probe tip technologies, multiple-probe tip methodology, 3-D modeling using tip based nanofabrication and the latest in imaging technology.
Iptycenes Chemistry: From Synthesis to Applications provides a comprehensive overview of the development of iptycene chemistry in the past seventy years. This book covers: (1) the basic nomenclature and general properties of iptycenes and their derivatives; (2) the synthesis and functionalization reactions of triptycenes, pentiptycenes, higher iptycenes, heterotriptycenes, and homotriptycenes; (3) the methods for the preparation of iptycene-based polymers with different types; and (4) the applications of iptycenes and their derivatives in molecular machines, materials science, host-guest chemistry, self-assembly, coordination chemistry, physical organic chemistry, medicinal chemistry, and so on. Consequently, such a book is not only helpful to researchers working in iptycene chemistry, but can also facilitate future research in wide areas.
MXene, a two-dimensional (2D) transition metal carbide, nitride, and carbonitride, was discovered in 2011. MXene has great potential as a cocatalyst in the field of photocatalysis due to its unique properties and structure. MXene-Based Photocatalysts: Fabrication and Applications introduces readers to the fundamentals, preparation, microstructure characterization, and a variety of applications of MXene-based photocatalysts. The book is a comprehensive reference for MXene materials and provides an overview of the current literature on MXene-based photocatalysts. FEATURES Discusses preparation methods of MXenes Describes the morphology and microstructure of MXenes Offers strategies for fabricating MXene-based photocatalysts Details the reaction mechanism of MXene-based photocatalysts Covers applications in photocatalytic water-splitting, photocatalytic CO2 reduction, photocatalytic degradation, photocatalytic nitrogen fixation, and photocatalytic H2O2 production This book serves as an invaluable guide for advanced students, industry professionals, professors, and researchers in the field of materials science and engineering, photocatalysis, energy, and environmental applications.
This book introduces readers to the cutting-edge topic of nanophotonic photochemical reactions and their applications. From among the various innovations in optical technology achieved by means of the non-uniform optical near field, it focuses on photochemical reactions at the nanoscale. Optical near fields are the elementary surface excitations of nanometric particles with non-uniform field distributions. After reviewing the unique properties of the non-uniform optical field, the book presents a range of applications of near-field assisted photochemical reactions, including near-field etching, visible water splitting, carbon dioxide reduction and reactions in solar cells.
An authoritative single-volume reference on the design and analysis of ESD protection for ICs Electrostatic discharge (ESD) is a major reliability challenge to semiconductors, integrated circuits (ICs), and microelectronic systems. On-chip ESD protection is a vital to any electronic products, such as smartphones, laptops, tablets, and other electronic devices. Practical ESD Protection Design provides comprehensive and systematic guidance on all major aspects of designs of on-chip ESD protection for integrated circuits (ICs). Written for students and practicing engineers alike, this one-stop resource covers essential theories, hands-on design skills, computer-aided design (CAD) methods, characterization and analysis techniques, and more on ESD protection designs. Detailed chapters examine an array of topics ranging from fundamental to advanced, including ESD phenomena, ESD failure analysis, ESD testing models, ESD protection devices and circuits, ESD design layout and technology effects, ESD design flows and co-design methods, ESD modelling and CAD techniques, and future ESD protection concepts. Based on the author's decades of design, research and teaching experiences, Practical ESD Protection Design - Features numerous real-world ESD protection design examples - Emphasizes on ESD protection design techniques and procedures - Describes ESD-IC co-design methodology for high-performance mixed-signal ICs and broadband radio-frequency (RF) ICs - Discusses CAD-based ESD protection design optimization and prediction using both Technology and Electrical Computer-Aided Design (TCAD/ECAD) simulation - Addresses new ESD CAD algorithms and tools for full-chip ESD physical design verification - Explores the disruptive future outlook of ESD protection Practical ESD Protection Design is a valuable reference for industrial engineers and academic researchers in the field, and an excellent textbook for electronic engineering courses in semiconductor microelectronics and integrated circuit designs. |
You may like...
Stream Data Mining: Algorithms and Their…
Leszek Rutkowski, Maciej Jaworski, …
Hardcover
R4,645
Discovery Miles 46 450
Control of Complex Systems - Theory and…
Kyriakos Vamvoudakis, Sarangapani Jagannathan
Hardcover
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Oncogenes as Transcriptional Regulators…
Moshe Vaniv, Jacques Ghysdael
Hardcover
R2,396
Discovery Miles 23 960
Wireless Public Safety Networks Volume 1…
Daniel Camara, Navid Nikaein
Hardcover
R2,674
Discovery Miles 26 740
Artificial Intelligence in Oncology Drug…
John W. Cassidy, Belle Taylor
Hardcover
R3,082
Discovery Miles 30 820
|