![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
Considerable amount of effort has been devoted, over the recent years, towards the development of electronic skin (e-skin) for many application domains such as prosthetics, robotics, and industrial automation. Electronic Skin: Sensors and Systems focuses on the main components constituting the e-skin system. The e-skin system is based on: i) sensing materials composing the tactile sensor array, ii) the front end electronics for data acquisition and signal conditioning, iii) the embedded processing unit performing tactile data decoding, and iv) the communication interface in charge of transmitting the sensors data for further computing. Technical topics discussed in the book include: * Tactile sensing material; * Electronic Skin systems; * Embedded computing and tactile data decoding; * Communication systems for tactile data transmission; * Relevant applications of e-skin system; The book takes into account not only sensing materials but it also provides a thorough assessment of the current state of the art at system level. The book addresses embedded electronics and tactile data processing and decoding, techniques for low power embedded computing, and the communication interface. Electronic Skin: Sensors and Systems is ideal for researchers, Ph.D. students, academic staff and Masters/research students in sensors/sensing systems, embedded systems, data processing and decoding, and communication systems.
Nanoscale Electronic Devices and Their Applications helps readers acquire a thorough understanding of the fundamentals of solids at the nanoscale level in addition to their applications including operation and properties of recent nanoscale devices. This book includes seven chapters that give an overview of electrons in solids, carbon nanotube devices and their applications, doping techniques, construction and operational details of channel-engineered MOSFETs, and spintronic devices and their applications. Structural and operational features of phase-change memory (PCM), memristor, and resistive random-access memory (ReRAM) are also discussed. In addition, some applications of these phase-change devices to logic designs have been presented. Aimed at senior undergraduate students in electrical engineering, micro-electronics engineering, physics, and device physics, this book: Covers a wide area of nanoscale devices while explaining the fundamental physics in these devices Reviews information on CNT two- and three-probe devices, spintronic devices, CNT interconnects, CNT memories, and NDR in CNT FETs Discusses spin-controlled devices and their applications, multi-material devices, and gates in addition to phase-change devices Includes rigorous mathematical derivations of the semiconductor physics Illustrates major concepts thorough discussions and various diagrams
The modern electronic testing has a forty year history. Test professionals hold some fairly large conferences and numerous workshops, have a journal, and there are over one hundred books on testing. Still, a full course on testing is offered only at a few universities, mostly by professors who have a research interest in this area. Apparently, most professors would not have taken a course on electronic testing when they were students. Other than the computer engineering curriculum being too crowded, the major reason cited for the absence of a course on electronic testing is the lack of a suitable textbook. For VLSI the foundation was provided by semiconductor device techn- ogy, circuit design, and electronic testing. In a computer engineering curriculum, therefore, it is necessary that foundations should be taught before applications. The field of VLSI has expanded to systems-on-a-chip, which include digital, memory, and mixed-signalsubsystems. To our knowledge this is the first textbook to cover all three types of electronic circuits. We have written this textbook for an undergraduate "foundations" course on electronic testing. Obviously, it is too voluminous for a one-semester course and a teacher will have to select from the topics. We did not restrict such freedom because the selection may depend upon the individual expertise and interests. Besides, there is merit in having a larger book that will retain its usefulness for the owner even after the completion of the course. With equal tenacity, we address the needs of three other groups of readers.
This thesis deals with the development and in-depth study of a new class of optoelectronic material platform comprising graphene and MoS_2, in which MoS_2 is used essentially to sensitize graphene and lead to unprecedently high gain and novel opto-electronic memory effects. The results presented here open up the possibility of designing a new class of photosensitive devices which can be utilized in various optoelectronic applications including biomedical sensing, astronomical sensing, optical communications, optical quantum information processing and in applications requiring low intensity photodetection and number resolved single photon detection.
2D Materials for Infrared and Terahertz Detectors provides an overview of the performance of emerging detector materials, while also offering, for the first time, a comparison with traditional materials used in the fabrication of infrared and terahertz detectors. Since the discovery of graphene, its applications to electronic and optoelectronic devices have been intensively researched. The extraordinary electronic and optical properties allow graphene and other 2D materials to be promising candidates for infrared (IR) and terahertz (THz) photodetectors, and yet it appears that the development of new detectors using these materials is still secondary to those using traditional materials. This book explores this phenomenon, as well as the advantages and disadvantages of using 2D materials. Special attention is directed toward the identification of the most-effective hybrid 2D materials in infrared and terahertz detectors, as well as future trends. Written by one of the world's leading researchers in the field of IR optoelectronics, this book will be a must-read for researchers and graduate students in photodetectors and related fields. Features * Offers a comprehensive overview of the different types of 2D materials used in fabrication of IR and THz detectors, and includes their advantages/disadvantages * The first book to compare new detectors to a wide family of common, commercially available detectors that use traditional materials.
This book brings together numerous contributions to the field of magnetoelectric (ME) composites that have been reported so far. Theoretical models of ME coupling in composites relate to the wide frequency range: from low-frequency to microwave ones and are based on simultaneous solving the elastostatic/elastodynamic and electrodynamics equations. Suggested models enable one to optimize magnetoelectric parameters of a composite. The authors hope to provide some assimilation of facts into establish knowledge for readers new to the field, so that the potential of the field can be made transparent to new generations of talent to advance the subject matter.
This book is an introduction to the basics of surface science. The Nobel Prize winner Wolfgang Pauli's statement, 'God made solids, but surfaces were the work of the devil!' emphasizes the diabolic nature of surfaces. Surfaces are the external border of materials to the external worlds, thus by exploring surfaces one can investigate the material. In the last few decades new and exciting surface properties have been explored in nanomaterials, low-dimensional structures in electronic and photonic devices and other numerous applications.
The electromechanical coupling effect introduced by piezoelectric vibration energy harvesting (PVEH) presents serious modeling challenges. This book provides close-form accurate mathematical modeling and experimental techniques to design and validate dual function PVEH vibration absorbing devices as a solution to mitigate vibration and maximize operational efficiency. It includes in-depth experimental validation of a PVEH beam model based on the analytical modal analysis method (AMAM), precisely identifying electrical loads that harvest maximum power and induce maximum electrical damping. The author's detailed analysis will be useful for researchers working in the rapidly emerging field of vibration based energy harvesting, as well as for students investigating electromechanical devices, piezoelectric sensors and actuators, and vibration control engineering.
This thesis makes a significant contribution to the development of cheaper Si-based Infrared detectors, operating at room temperature. In particular, the work is focused in the integration of the Ti supersaturated Si material into a CMOS Image Sensor route, the technology of choice for imaging nowadays due to its low-cost and high resolution. First, the material is fabricated using ion implantation of Ti atoms at high concentrations. Afterwards, the crystallinity is recovered by means of a pulsed laser process. The material is used to fabricate planar photodiodes, which are later characterized using current-voltage and quantum efficiency measurements. The prototypes showed improved sub-bandgap responsivity up to 0.45 eV at room temperature. The work is further supported by a collaboration with STMicroelectronics, where the supersaturated material was integrated into CMOS-based sensors at industry level. The results show that Ti supersaturated Si is compatible in terms of contamination, process integration and uniformity. The devices showed similar performance to non-implanted devices in the visible region. This fact leaves the door open for further integration of supersaturated materials into CMOS Image Sensors.
Both the demographics and lack of resources in the health and well-being industry are increasingly forcing us to find alternative solutions for individualized health and social care. In an effort to address this issue, smart technologies present enormous potential in solving this challenge. This book strives to enhance communication and collaboration between technology and health and social care sectors. The reader will receive an extensive overview of the possibilities of various technologies in care sectors (including ICT, electronics, automation, and sensor technology) written by experts from various countries. It will prove extremely useful for engineers developing well-being related systems, software, or other devices that can be used by professionals working with people with specialist needs, well-being and health service providers, educators teaching related courses, and upper level undergraduate students and graduate student studying related topics. The technology focus of the book is widespread and addresses elderly care and hospitals, in addition to solutions for various user groups, devices, and technologies. Beyond serving as a resource for nurses and people working in care sector, the book is also meant to give guidelines for engineers developing person-centered systems by exploring the integration of these technologies into service systems.
Metamaterials: Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.
Frank Handle ] 1.1 What to Expect For some time now, I have been toying around with the idea of writing a book about "Ceramic Extrusion," because to my amazement I have been unable to locate a single existing, comprehensive rundown on the subject - much in contrast to, say, plastic extrusion and despite the fact that there are some outstanding contributions to be found about certain, individual topics, such as those in textbooks by Reed 1], Krause 2], Bender/Handle ] 3] et al. By way of analogy to Woody Allen's wonderfully ironic movie entitled "Eve- thing You Always Wanted to Know about Sex," I originally intended to call this book "Everything You Always Wanted to Know about Ceramic Extrusion," but - ter giving it some extra thought, I eventually decided on a somewhat soberer title. Nevertheless, my companion writers and I have done our best - considering our target group and their motives - not to revert to the kind of jargon that people use when they think the less understandable it sounds, the more scienti c it appears. This book addresses all those who are looking for a lot or a little general or selective information about ceramic extrusion and its sundry aspects. We realize that most of our readers will not be perusing this book just for fun or out of intellectual curiosity, but because they hope to get some use out of it for their own endeavours."
This book offers an extensive, interdisciplinary overview of dynamic textiles. Specifically, it discusses new findings and design concepts concerning the integration of smart materials into textile substrates and their corresponding dynamic behavior. Introducing the topic of dynamic color in textiles, it presents experimental procedures to achieve color change and dynamic light transmittance in thermochromic textiles, and examines their thermoresponsive behavior and respective electrical activation. Moreover, it also addresses the topic of dynamic form and reports on the authors' original findings using shape-memory alloys and geometric morphologies based on origami techniques. Covering innovative smart textiles and important considerations in terms of design variables when developing textiles with dynamic qualities, and providing extensive, practice-oriented insights into the interaction of textiles with light, it is primarily intended for academics, researchers and practitioners developing smart, dynamic and interactive textiles. The sections describing in detail the experimental work aimed at the integration of smart materials in textile substrates also appeal to professionals in the textile industry.
Since their development in the 1990s, it has been discovered that diluted nitrides have intriguing properties that are not only distinct from those of conventional semiconductor materials, but also are conducive to various applications in optoelectronics and photonics. The book examines these applications and presents a broad and in-depth look at the basic electronic and optical properties of diluted nitrides. The aim of Physics and Applications of Diluted Nitrides is to provide graduate students, researchers and engineers with a comprehensive overview of the present knowledge and future perspectives of diluted nitrides. Co-authored by a group of leading scientists in the field, this book brings the reader up to speed on the development and current state of diluted nitride applications, as well as the technologies to be developed in the near future.
Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on Laser assisted Fabrication' is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.
This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.
The book highlights recent developments in the field of biomedical systems covering a wide range of technological aspects, methods, systems and instrumentation techniques for diagnosis, monitoring, treatment, and assistance. Biomedical systems are becoming increasingly important in medicine and in special areas of application such as supporting people with disabilities and under pandemic conditions. They provide a solid basis for supporting people and improving their health care. As such, the book offers a key reference guide about novel medical systems for students, engineers, designers, and technicians.
The role of manufacturing in a country's economy and societal development has long been established through their wealth generating capabilities. To enhance and widen our knowledge of materials and to increase innovation and responsiveness to ever-increasing international needs, more in-depth studies of functionally graded materials/tailor-made materials, recent advancements in manufacturing processes and new design philosophies are needed at present. The objective of this volume is to bring together experts from academic institutions, industries and research organizations and professional engineers for sharing of knowledge, expertise and experience in the emerging trends related to design, advanced materials processing and characterization, and advanced manufacturing processes.
Master Today's Best Practices for Building Reusable .NET Frameworks, Libraries, and Components ".NET Core [contains] advances important to cloud application developers: performance, resource utilization, container support, and others. This third edition of Framework Design Guidelines adds guidelines related to changes that the .NET team adopted during transition from the world of client-server application to the world of the Cloud." -From the Foreword by Scott Guthrie Framework Design Guidelines has long been the definitive guide to best practices for developing components and component libraries in Microsoft .NET. Now, this third edition has been fully revised to reflect game-changing API design innovations introduced by Microsoft through eight recent updates to C#, eleven updates to .NET Framework, and the emergence and evolution of .NET Core. Three leading .NET architects share the same guidance Microsoft teams are using to evolve .NET, so you can design well-performing components that feel like natural extensions to the platform. Building on the book's proven explanatory style, the authors and expert annotators offer insider guidance on new .NET and C# concepts, including major advances in asynchronous programming and lightweight memory access. Throughout, they clarify and refresh existing content, helping you take full advantage of best practices based on C# 8, .NET Framework 4.8, and .NET Core. Discover which practices should always, generally, rarely, or never be used-including practices that are no longer recommended Learn the general philosophy and fundamental principles of modern framework design Explore common framework design patterns with up-to-date C# examples Apply best practices for naming, types, extensibility, and exceptions Learn how to design libraries that scale in the cloud Master new async programming techniques utilizing Task and ValueTask Make the most of the Memory and Span types for lightweight memory access This guide is an indispensable resource for everyone who builds reusable .NET-based frameworks, libraries, or components at any scale: large system frameworks, medium-size reusable layers of large distributed systems, extensions to system frameworks, or even small shared components. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Research on biomedical applications of nanomaterials has exhibited the rapidly evolving field of biomedical sciences by showing how effective they are in treatment. These particles hold considerable potential for biomedical applications. Work is ongoing, and the results suggest a possibility for a sustainable future for nanomaterials in both therapeutic and biomedical fields. This book highlights current and emerging applications, taking global research findings into consideration. We believe the focus on the identification and role of nanomaterial applications in therapeutic and biomedical sciences can lead to novel solutions in the fields. The chapters of this book are disseminated in a manner that can be readily adopted as sources for new and further study. The editors integrate advanced texts in their research that help graduate students, researchers and professors. Additionally, we believe that international readers will be able to make use of this book for reference purposes.
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine. |
You may like...
Mems for Automotive and Aerospace…
Michael Kraft, Neil M. White
Hardcover
R4,041
Discovery Miles 40 410
Roadmap for Skutterudites and Point…
Zetian Mi, Hark Hoe Tan
Hardcover
R5,223
Discovery Miles 52 230
Metal Oxide Defects - Fundamentals…
Vijay Kumar, Sudipta Som, …
Paperback
R5,032
Discovery Miles 50 320
|