![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
Presents the first comprehensive book on electronics for vinyl High-level, practical information with minimal mathematics Includes topics such as low-noise amplification, proper cartridge loading, equalisation for archival recordings, and more Includes tricks and innovations from an expert author
This book offers a bird's-eye view of the recent development trends in photovoltaics - a big business field that is rapidly growing and well on its way to maturity. The book describes current efforts to develop highly efficient, low-cost photovoltaic devices based on crystalline silicon, III-V compounds, copper indium gallium selenide (CIGS) and perovskite photovoltaic cells along with innovative, cost-competitive glass/ flexible tubular glass concentrator modules and systems, highlighting recent attempts to develop highly efficient, low-cost, flexible photovoltaic cells based on CIGS and perovskite thin films. This second edition presents, for the first time, the possible applications of perovskite modules together with Augsburger Tubular photovoltaics.
Interfaces between dissimilar materials are met everywhere in microelectronics and microsystems. In order to ensure faultless operation of these highly sophisticated structures, it is mandatory to have fundamental understanding of materials and their interactions in the system. In this difficult task, the traditional method of trial and error is not feasible anymore; it takes too much time and repeated efforts. In "Interfacial Compatibility in Microelectronics," an alternative approach is introduced. In this revised method four fundamental disciplines are combined: i) thermodynamics of materials ii) reaction kinetics iii) theory of microstructures and iv) stress and strain analysis. The advantages of the method are illustrated in "Interfacial Compatibility in Microelectronics" which includes: solutions to several common reliability issues in microsystem technology, methods to understand and predict failure mechanisms at interfaces between dissimilar materials and an approach to DFR based on deep understanding in materials science, rather than on the use of mechanistic tools, such as FMEA. Interfacial Compatibility in Microelectronics provides a clear and methodical resource for graduates and postgraduates alike."
The application of molecules in technological devices hinges on the
proper understanding of their behavior on metallic electrodes or
substrates. The intrinsic molecular electronic and magnetic
properties are modified at a metallic interface, and greatly depend
on the atomic configuration of the molecule-metal bond. This poses
certain problems, such as the lack of reproducibility in the
transport properties of molecular junctions, but also offers the
possibility to induce new charge and spin configurations that are
only present at the interface. The results presented in this thesis
address this issue, providing a comprehensive overview of the
influence of molecule-metal and molecule-molecule interactions on
the electronic and magnetic properties of molecules adsorbed on
metallic substrates. Using metal-phthalocyanines (MePc), a commonly
used metal-organic complex as a model system, each chapter explores
different aspects of the interaction with silver surfaces: the
local adsorption geometry, self-assembly, the modifications of the
electronic and magnetic characteristics due to hybridization and
charge transfer, and finally the manipulation of molecular charge
and spin states by electron doping using alkali atoms moved with
the STM tip.
This book examines both the potential application of electronic nose technology, and the current state of development of chemical sensors for the detection of vapours from explosives, such as those used in landmines. The two fields have developed, somewhat in parallel, over the past decade and so one of the purposes of this workshop, on which the book is based, was to bring together scientists from the two fields in order to challenge the two communities and, mutually, stimulate both fields. It begins with a review of the basic principles of an electronic nose and explores possible ways in which the detection limit of conventional electronic nose technology can be reduced to the level required for the trace levels observed for many explosive materials. Next are reviews of the use of several different types of solid-state chemical sensors: polymer-based sensors, i.e. chemiluminescent, fluorescent and optical, to detect explosive materials; metal oxide semiconducting resistive sensors; and then electrochemical sensors. Next, different pattern recognition techniques are presented to enhance the performance of chemical sensors. Then biological systems are considered as a possible blue-print for chemical sensing. The biology can be employed either to understand the way insects locate odorant sources, or to understand the signal processing neural pathways. Next is a discussion of some of the new types of electronic noses; namely, a fast GC column with a SAW detector and a micromechanical sensor. Finally, the important issues of sampling technologies and the design of the microfluidic systems are considered. In particular, the use of pre-concentrators and solid phase micro extractors to boost the vapour concentration before it is introduced to the chemical sensor or electronic nose.
Internet of things (IoT) is a new type of network that combines communication technology, expanded applications, and physical devices. Among them, agriculture is one of the most important areas in the application of the IoT technology, which has its unique requirements and integration features. Compared to the information technology in traditional agriculture, the agricultural IoT mainly refers to industrialized production and sustainable development under relatively controllable conditions. Agricultural IoT applies sensors, RFID, visual capture terminals and other types of sensing devices to detect and collect site information, and with broad applications in field planting, facility horticulture, livestock and poultry breeding, aquaculture and agricultural product logistics. It utilizes multiple information transmission channels such as wireless sensor networks, telecommunications networks and the internet to achieve reliable transmission of agricultural information at multiple scales and intelligently processes the acquired, massive information. The goals are to achieve (i) optimal control of agricultural production process, (ii) intelligent electronic trading of agricultural products circulation, and (iii) management of systematic logistics, quality and safety traceability. This book focuses on three levels of agricultural IoT network: information perception technology, information transmission technology and application technology.
This book contains essential advice and guidance for those thinking of starting out in the Portable appliance testing industry. A detailed look at the subject of Portable Appliance Testing (PAT), this book is the ideal accompaniment for those studying the City & Guild and EAL PAT courses. Theory and assessment covered in one volume, with advice, revision exercises and sample tests to aid exam preparation. Contains all the information required to qualify and begin testing portable appliances. The Get Qualified series provides clear and concise guidance for people looking to work within the electrical industry. This book clearly explains the options available to those wishing to enter the portable appliance testing industry and supports the reader through the subject in a step-by-step manner. Most importantly, it covers the theory behind portable appliance testing as well as looking in detail at each exam learning outcome. There are also sections on exam preparation, revision exercises and sample questions.
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.
This classroom-tested textbook is a modern primer on the rapidly developing field of quantum nano optics which investigates the optical properties of nanosized materials. The essentials of both classical and quantum optics are presented before embarking through a stimulating selection of further topics, such as various plasmonic phenomena, thermal effects, open quantum systems, and photon noise. Didactic and thorough in style, and requiring only basic knowledge of classical electrodynamics, the text provides all further physics background and additional mathematical and computational tools in a self-contained way. Numerous end-of-chapter exercises allow students to apply and test their understanding of the chapter topics and to refine their problem-solving techniques.
As electronics have shrunk and power requirements have gotten less demanding, it's no surprise that we're starting to wear our electronic creations. Today's microcontrollers are tiny micro-sized computers that can be embedded into many projects--especially wearables. And they are perfectly happy running off a coin cell or rechargeable lithium polymer battery. This issue explores the latest trends in microcontrollers, with a special focus on wearable and lightweight boards. With 34 projects inside, you can build everything from a smart watch to your own electronic garments. A special section on Intel's Edison tells you everything you need to know about this powerful, inexpensive, and lightweight board.
This comprehensive text examines existing and emerging electrical drive technologies. The authors clearly define the most basic electrical drive concepts and go on to explain the most important details while maintaining a solid connection to the theory and design of the associated electrical machines. Also including links to a number of industrial applications, the authors take their investigation of electrical drives beyond theory to examine a number of practical aspects of electrical drive control and application. Key features: * Provides a comprehensive summary of all aspects of controlled-speed electrical drive technology including control and operation. * Handling of electrical drives is solidly linked to the theory and design of the associated electrical machines. Added insight into problems and functions are illustrated with clearly understandable figures. * Offers an understanding of the main phenomena associated with electrical machine drives. * Considers the problem of bearing currents and voltage stresses of an electrical drive. * Includes up-to-date theory and design guidelines, taking into account the most recent advances. This book s rigorous coverage of theoretical principles and techniques makes for an excellent introduction to controlled-speed electrical drive technologies for Electrical Engineering MSc or PhD students studying electrical drives. It also serves as an excellent reference for practicing electrical engineers looking to carry out design, analyses, and development of controlled-speed electrical drives.
This book is loosely based on a Multidisciplinary University Research Initiative (MURI) project and a few supplemental projects sponsored by the Of?ce of Naval Research (ONR) during the time frame of 2004-2009. The initial technical scope and vision of the MURI project was formulated by Drs. Larry Cooper and Joel Davis, both program of?cers at ONR at the time. The unifying theme of this MURI project and its companionefforts is the concept of cellular nonlinear/neuralnetwork (CNN) technology and its various extensions and chip implementations, including nanoscale sensors and the broadening ?eld of cellular wave computing. In recent years, CNN-based vision system drew much attention from vision scientists to device technologists and computer architects. Due to its early - plementation in a two-dimensional (2D) topography, it found success in early vision technologyapplications, such as focal-plane arrays, locally adaptable sensor/ processor integration, resulting in extremely high frame rates of 10,000 frames per second. More recently it drew increasing attention from computer architects, due to its intrinsic local interconnect architecture and parallel processing paradigm. As a result, a few spin-off companies have already been successful in bringing cel- lar wave computing and CNN technology to the market. This book aims to capture some of the recent advances in the ?eld of CNN research and a few select areas of applications.
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already become a new hotpot of research in the community.
The morphology that results during the growth of a material on the substrate of a different material is central to the fabrication of all quantum heterostructures. This morphology is determined by several factors, including the manner in which strain is accommodated if the materials have different lattice constants. One of the most topical manifestations of lattice mis't is the formation of coherent thr- dimensional(3D)islandsduringtheStranski-Krastanovgrowthofahighly-strained system. The prototypical cases are InAs on GaAs(001) and Ge on Si(001), though other materials combinations also exhibit this phenomenon. When the 3D islands are embedded within epitaxiallayers of a material that has a wider band gap, the carriers within the islands are con?ned by the potential barriers that surround each island, forming an array of quantum dots (QDs). Such structures have been produced for both basic physics studies and device fab- cation, including QD lasers and light-emitting diodes (LEDs) operating at the c- mercially important wavelengths of 1.3 u m and 1.55 u m. On a more speculative level, QD ensembles have been suggested as a possible pathway for the solid-state implementation of a quantum computer. Although some of the principles of qu- tum computing have been veri?ed by other means, the practical utilization of this new computingparadigmmay warrant some sort of solid state architecture. QDs are seen as possible components of such a computer, as evidenced by a number of papersappearingintheliteratureproposingQD-basedarchitecturesandworkshops that are being organized to explore these possibilities."
Sintering process studies have re-emerged strongly in the past decade due to extensive discussions about the stabilization of nanoparticles and nanostructures, and the development of controlled nanograined bulk materials. This book presents the state-of-art in experiments and theory of novel sintering processes, traditional sintering and grain growth. The scope ranges from powder metallurgy to ceramic and composites processing. The challenges of conventional and novel sintering and grain growth in nanopowders and nanostructures are addressed, being useful for students as well as professionals interested in sintering at the nanoscale.
This book merges theoretical and experimental works initiated in 1997 from consideration of periodical artificial dielectric structures comprising magneto-optical materials. Modern advances in magnetophotonics are discussed giving theoretical analyses and demonstrations of the consequences of light interaction with non-reciprocal media of various designs. This first collection of foundational works is devoted to light-to-artificial magnetic matter phenomena and related applications. The subject covers the physical background and the continuing research in the field of magnetophotonics.
Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devices Discusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modeling Explores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysis Investigates spintronic device write and read optimization in light of spintronic memristive effects Considers spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effects Proposes unique solutions for low-power spintronic device applications where memory is closely integrated with logic Metallic Spintronic Devices aims to equip anyone who is serious about metallic spintronic devices with up-to-date design, modeling, and processing knowledge. It can be used either by an expert in the field or a graduate student in course curriculum.
This book explores many fundamental topics in a basic and easy-to-understand manner. It, and the accompanying DC-AC Electrical Fundamentals by the same co-authors, have been developed using a classic textbook – Electricity and Electronics: A Survey (5th Edition) by Patrick and Fardo – as a framework. Both new books have been structured using the same basic sequence and organization of the textbook as previous editions. This book has been expanded to 22 chapters, further simplifying content and providing a more comprehensive coverage of fundamental content. The content has been continually updated and revised through new editions and by external reviewers throughout the years. Additional quality checks to ensure technical accuracy, clarity and coverage of content have always been an area of focus. Each edition of the text has been improved through the following features: Improved and updated text content Improved usage of illustrations and photos Use of color to add emphasis and clarify content
In this book, the authors discuss some of the main challenges and new opportunities in science and engineering research, which involve combining computational and experimental approaches as a promising strategy for arriving at new insights into composition-structure-property relations, even at the nanoscale. From a practical standpoint, the authors show that significant improvements in the material/biomolecular foresight by design, including a fundamental understanding of their physical and chemical properties, are vital and will undoubtedly help us to reach a new technological level in the future.
Written by a pioneer in the development of spin labeling in biophysics, this expert book covers the fundamentals of nitroxide spin labeling through cutting-edge applications in chemistry, physics, materials science, molecular biology, and biomedicine. Nitroxides have earned their place as one of the most popular organic paramagnets due to their suitability as inhibitors of oxidative processes, as a means to polarize magnetic nuclei, and, in molecular biology, as probes and labels to understand molecular structures and dynamics AS DRAGS FOR CANCER AND OTHER DISEASES. Beginning with an overview of the basic methodology and nitroxides' 145-year history, this book equips students with necessary background and techniques to undertake original research and industry work in this growing field.
This book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.
In recent years, graphene based research has witnessed a tremendous explosion. This two dimensional "dream" material has come into the main spotlight of fundamental and applied research in diverse nano-science fields, but surprisingly rapidly, it has also attracted the interest of major stakeholders in the private sector (especially industries in the ICT sector). The technological exploitation of graphene can be considered to be based on four fundamental interconnected wide topics: growth and synthesis methods, nano-structuring and tailoring of graphene properties, structural and physical characterization, and device design and applications. This proceedings book presents the results highlighted at GraphITA 2011, a multidisciplinary and intersectorial European Workshop on Synthesis, Characterization and Technological Exploitation of Graphene. The workshop realised on 15-18 May at Gran Sasso National Laboratories (Assegi-L'Aquila, Italy) has brought together scientists and engineers working on different technological uses of graphene in a multidisciplinary and multisectorial (academia/industry) environment.
Acknowledging that DRAM, together with NAND Flash, is driving semiconductor technologies with a wide spectrum of usage--ranging from PC, mobile phone, and digital home appliances--this survey implicates the potential of floating body cell (FBC) properties in further increasing the bit density in electronic devices. Detailing FBC's operational principles and the scaling guideline, along with many simulation and hardware measurements results, which support the theoretical and simulated predictions on FBC properties, this summary provides authoritative insight on the future directions of FBC technologies.
Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications reviews the fundamentals, processing methods and applications of this key materials system. Topics addressed comprehensively cover chemical and physical properties, synthesis, preparation, both accepted and novel processing methods, modeling and simulation. The book provides fundamental information on the key properties that impact performance, such as particle size and crystal structure, along with methods to measure, analyze and evaluate. Finally, important applications are covered, including biomedical, energy, electronics and materials applications. |
You may like...
Horse from Concep.to Maturity
Peter Rossdale, Melanie Bailey
Hardcover
|