![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book explores the applications of ferroelectric materials in information technology by developing several prototype devices based on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals. It describes how an optothermal field-effect transistor (FET) was constructed on the PMN-26PT single crystal, using a MoS2 monolayer as the channel semiconductor material. This fusion of pyroelectric effect and the interface engineering of 2D materials provides an effective strategy for the 'photon revolution' of FET. An ultra-broadband photodetector (UV ~ THz) was monolithically integrated into a [111]-oriented PMN-28PT single crystal by using silver nanowires in the transparent top electrode. The photodetector showed a dramatic improvement in operation frequency up to 3 kHz: an order of magnitude higher than that of traditional pyroelectric photodetectors. A self-powered integrated module was demonstrated through the combination of a triboelectric nanogenerator and a ferroelectric FET. The stored information can easily be written in the memory system using mechanical energy, solving the power consumption problem with regard to information writing in ferroelectric nonvolatile memories. This book extends the applications of ferroelectric single crystals into areas other than piezoelectric devices, paving the way for exciting future developments.
This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.
In recent years, films and coatings have been developed and applied in industries that have affected people's lives in our current society. Films and coatings have also evolved from being single compound to multi-compound to multilayer and to finally being nanostructures and nanocomposites. Protective Thin Coatings Technology Two-Volume Set captures recent developments and advances as a comprehensive and readable reference. It highlights the development and advances in the preparation, characterization, and applications of protective and functional micro-/nano-scaled films and coatings. It features various aspects of hard coatings, covering advanced sputtering technologies, structural characterizations and simulations as well as applications. It also presents technologies aimed at functionality used in nanoelectronics, solar selective absorbers, solid oxide fuel cells, piezo-applications, and sensors. This two-volume set will benefit industry professionals and researchers working in areas related to semiconductor, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and materials engineering.
This book provides an overview of electrodeposition of nanomaterials from principles to modern concepts for advanced materials in science and technology. Electrochemical deposition or electrodeposition is explained for fabrication and mass production of functional and nanostructured device materials. The present book spans from principles to modern insights and concepts. It gives a comprehensive overview of the electrochemistry of materials, which is useful as basic information to understand concepts used for nanostructuring of electrodeposited materials, reviews the electrodeposition constituents, thermodynamics and kinetics of electrodeposition, electrochemical and instrumental assessment techniques and other physical factors affecting the electrodeposition mechanisms. A wide variety of nanostructured materials and related concepts and applications are explained with respect to nanocrystals, nanocrystalline films, template-based nanostructures, nanocomposite films, nanostructures on semiconductors, multilayers, mesoporous films, scanning microscopical probe assisted fabrication and galvanic replacement. This book is useful for researchers in materials science, engineering technologists and graduate students. It can also be used as a textbook for undergraduates and graduate students studying related disciplines.
This book approaches the design of functionally superior optoelectronic devices through the use of bio-inspired nanostructures and multiscale material structures through a step-by-step approach. The book combines both the fundamental theoretical concepts involved in understanding and numerically modelling optoelectronic devices and the application of such methods in addressing challenging research problems in nanostructured optoelectronic design and fabrication. The book offers comprehensive content in optoelectronic materials and engineering and can be used as a reference material by researchers in nanostructured optoelectronic design.
Complete PCB Design Using OrCAD Capture and PCB Editor, Second Edition, provides practical instruction on how to use the OrCAD design suite to design and manufacture printed circuit boards. Chapters cover how to Design a PCB using OrCAD Capture and OrCAD PCB Editor, adding PSpice simulation capabilities to a design, how to develop custom schematic parts, how to create footprints and PSpice models, and how to perform documentation, simulation and board fabrication from the same schematic design. This book is suitable for both beginners and experienced designers, providing basic principles and the program's full capabilities for optimizing designs. Companion site https://www.elsevier.com/books-and-journals/book-companion/9780128176849
"Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials "describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs) interfacing with organic and inorganic materials. The three main chapters detail novel trends in photophysics related to the interaction of light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures. The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: -Light harvesting, energy conversion, photoinduced charge separation and transport in CNT based nanohybrids -CNT/polymer composites exhibiting photoactuation; and -Optical spectroscopy and structure of CNT/DNA complexes. Including original data and a short review of recent research, "Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials" makes this emerging field of photophysics and its applications available to academics and professionals working with carbon nanotube composites in fundamental and applied fields
The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of contributions will serve as a short introduction to these cutting edge research fields.
This monograph offers a comprehensive overview of diverse quantization phenomena in layered materials, covering current mainstream experimental and theoretical research studies, and presenting essential properties of layered materials along with a wealth of figures. This book illustrates commonly used synthesis methods of these 2D materials and compares the calculated results and experimental measurements, including novel features not yet reported. The book also discusses experimental measurements of magnetic quantization, theoretical modeling for studying systems and covers diversified magneto-electronic properties, magneto-optical selection rules, unusual quantum Hall conductivities, and single- and many-particle magneto-Coulomb excitations. Rich and unique behaviors are clearly revealed in few-layer graphene systems with distinct stacking configuration, stacking-modulated structures, silicon-doped lattices, bilayer silicene/germanene systems with the bottom-top and bottom-bottom buckling structures, monolayer and bilayer phosphorene systems, and quantum topological insulators. The generalized tight-binding model, the static and dynamic Kubo formulas, and the random-phase approximation are developed/modified to thoroughly explore the fundamental properties and propose the concise physical pictures. Different high-resolution experimental measurements are discussed in detail, and they are consistent with the theoretical predictions. Aimed at readers working in materials science, physics, and engineering this book should be useful for potential applications in energy storage, electronic devices, and optoelectronic devices.
The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances, the authors discuss key design methodologies as well as the various functions and capabilities of the three nonvolatile memory technologies.
The use of lasers in the processing of electronic and photonic
material is becoming increasingly widespread, with technological
advances reducing costs and increasing both the quality and range
of novel devices which can be produced. Laser growth and processing
of photonic devices is the first book to review this increasingly
important field.
According to Moore's Law, not only does the number of transistors in an integrated circuit double every two years, but transistor size also decreases at a predictable rate. At the rate we are going, the downsizing of CMOS transistors will reach the deca-nanometer scale by 2020. Accordingly, the gate dielectric thickness will be shrunk to less than half-nanometer oxide equivalent thickness (EOT) to maintain proper operation of the transistors, leaving high-k materials as the only viable solution for such small-scale EOT. This comprehensive, up-to-date text covering the physics, materials, devices, and fabrication processes for high-k gate dielectric materials, Nano-CMOS Gate Dielectric Engineering systematically describes how the fundamental electronic structures and other material properties of the transition metals and rare earth metals affect the electrical properties of the dielectric films, the dielectric/silicon and the dielectric/metal gate interfaces, and the resulting device properties. Specific topics include the problems and solutions encountered with high-k material thermal stability, defect density, and poor initial interface with silicon substrate. The text also addresses the essence of thin film deposition, etching, and process integration of high-k materials in an actual CMOS process. Fascinating in both content and approach, Nano-CMOS Gate Dielectric Engineering explains all of the necessary physics in a highly readable manner and supplements this with numerous intuitive illustrations and tables. Covering almost every aspect of high-k gate dielectric engineering for nano-CMOS technology, this is a perfect reference book for graduate students needing a better understanding of developing technology as well as researchers and engineers needing to get ahead in microelectronic engineering and materials science.
Arthur Kay s exciting new publication is a must have for practicing, professional electrical engineers. This comprehensive guide shows engineers how to design amplifiers and associated electronics to minimize noise, providing tricks, rules-of-thumb, and analysis to create successful low noise circuits. Forget the classical textbook traps of equations, virtual grounds, and a lot of double-speak, the novel but educational presentation used here uses definition-by -example and straight-forward analysis. This is the ultimate reference book for engineers who don't have the time to read, since the concepts are presented in detailed pictures and then repeated in the text for those who like both. Operational amplifiers play a vital role in modern electronics
design. Today, op amps serve as the interfaces between the digital
world of microprocessors, microcontrollers, and other digital
circuits and the analog "real world." If an analog signal must be
amplified, conditioned, filtered, or converted to be used by a
digital system, an op amp is almost always involved. Noise is an
unwanted signal that will corrupt or distort the desired signal,
and veteran engineers as well as new college graduates are often
faced with a lack of experience in noise analysis for operational
amplifiers. The author has created a publication that is packed
with essential information, while still being accessible to all
readers.
This volume contains revised and extended research articles by prominent researchers. Topics covered include operations research, scientific computing, industrial engineering, electrical engineering, communication systems, and industrial applications. The book offers the state-of-the-art advances in engineering technologies and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies.
Structure and Concentration of Point Defects in Selected Spinels and Simple Oxides presents diagrams and numerical data of important properties of spinels and oxides based on experimental results published in the literature. The values of many parameters presented can be used for optimization of preparation of new systems, to predict the practical properties of these systems. Applications include electronic devices, new metallic alloys with improved corrosion resistance, new ceramic materials, and novel catalysts, particularly for oxygen evolution and reduction reactions. Organized into four comprehensive parts, the authors present the problem of the structure and concentration of ionic and electronic defects in magnetite and hausmannite, pure and doped with M3+ cations, and in spinels exhibiting magnetic properties and high electric conductance. Additional Features include: Includes 236 figures presenting equilibrium diagrams of point defects and other useful details related to stoichiometric and nonstoichiometric spinels and oxides. Details novel methods of calculation of equilibria involving point defects. Collects scattered data published in nearly 500 original articles since the 1950s on spinels and oxides in one useful volume. Building upon the data presented, this book is an indispensable reference for material scientists and engineers developing new metal or oxide-based systems can easily calculate other useful parameters and compare the properties of different materials to select the best candidates for an intended use.
This first volume in the Mosharaka for Research and Studies International Conference Proceedings series (P-MIC) contains peer-reviewed papers presented at the 1st International Congress on Engineering Technologies (EngiTek 2020). This event was held remotely on 16-18 June 2020, and hosted by the Faculty of Engineering, Jordan University of Science & Technology (Irbid, Jordan). The conference represented a major forum for professors, students, and professionals from all over the world to present their latest research results, and to exchange new ideas and practical experiences in the most cutting-edge areas of the field of engineering technologies. Topics covered include electrical engineering, computer science and electronics.
This book provides detailed and accurate information on the history, structure, operation, benefits and advanced structures of silicon MESFET, along with modeling and analysis of the device. The authors explain the detailed physics that are important in modeling of SOI-MESFETs, and present the derivations of compact model expressions so that users can recognize the physical meaning of the model equations and parameters. The discussion also includes advanced structures for SOI-MESFET for submicron applications.
An Introduction to Electronic Materials for Engineers aims to give a basic understanding and comprehensive overview of a wide range of materials, such as conducting materials, semiconductors, magnetic materials, optical materials, dielectric materials, superconductors, thermoelectric materials and ionic materials. The new chapters added into this latest edition include thin film electronic materials, organic electronic materials and nanostructured materials. These chapters aim to reflect the new developments made in electronic materials and nanotechnology research towards the design and fabrication of modern equipment and electronic devices.This book is designed for undergraduate engineering and technology students who have background knowledge of physics and chemistry, as well as for engineers who work on materials processing or application, or electric/electronic engineering.It emphasizes on the synthesis, performance and application of electronic materials and will enable readers to understand and relate to the devices and materials.
The Landolt-Bornstein subvolumes III/44A and III/44B update the existing 8 volumes III/41 about Semiconductors and contain new Data and Updates for I-VII, III-V, III-VI, IV, VI and II-VI Compounds. The text, tables figures and references are provided in self-contained document files, each one dedicated to a substance and property. The first subvolume III/44A contains a "Systematics of Semiconductor Properties," which should help the non-specialist user to understand the meaning of the material parameters. Hyperlinked lists of substances and properties lead directly to the documents and make the electronic version an easy-to-use source of semiconductor data. In the new updates III/44A and III/44B, links to existing material in III/41 or to related documents for a specific substance are also included.
In the last few decades the effect of lead contamination on human health has received significant attention. Based on such concerns elimination of lead from ceramic glaze, paint, plumbing etc. has been legislated and implemented. However, till recently, solders used in electronics, remained lead-based. The worldwide multi-faceted research efforts to arrive at suitable solutions, especially as the deadline for implementation of lead-free electronic solders approaches, have resulted in an exhaustive number of research papers in several reviewed scientific journals. Similarly there have been presentations in several national and international meetings of various technical societies. It is impossible for any researcher or student to be aware of all the materials that have been, and are being, published in these many different sources, so it becomes essential to have most of the relevant and currently available information presented in a single publication. electronic solder area were identified, and researchers recognized for their significant scientific contributions in those areas were invited to write articles on those topics. They were asked to address the importance of a given issue, the current status of understanding and available solutions, the problems that still need to be tackled and suggestions for potential approaches to do so. The chapters are organized around the following subject areas: thermodynamics and phase diagrams, solder developments, processing issues, mechanical property considerations, effects of thermal excursions (TMF), electromigraion, whisker growth, tin pest, and industrial perspectives (consumer electronics, and high-end high reliability applications). This material originally appeared in a special issue of Journal of Materials Science: Materials in Electronics. for academic researchers in fields other than Materials Science and those in industry, and to provide wider awareness of the current status of lead-free electronic solders to those persons active in the area but who are not regular readers of the Journal, these articles are being reprinted in book form.
Describes in detail the semiconductor components of the electronic tuner of televisions and VCRs. Covers voltage-variable capacitance diodes, band-switch diodes, dual-gate FETs, and others, including their performance as mediators of tuning and amplification. Emphasizes coverage of the analysis of distortion characteristics of tuning diodes and FETs. Also covers design and fabrication processes best suited for mass production.
Compact Hierarchical Bipolar Transistor Modeling with HICUM will be of great practical benefit to professionals from the process development, modeling and circuit design community who are interested in the application of bipolar transistors, which include the SiGe: C HBTs fabricated with existing cutting-edge process technology. The book begins with an overview on the different device designs of modern bipolar transistors, along with their relevant operating conditions; while the subsequent chapter on transistor theory is subdivided into a review of mostly classical theories, brought into context with modern technology, and a chapter on advanced theory that is required for understanding modern device designs. This book aims to provide a solid basis for the understanding of modern compact models. Readership: R&D professionals and modeling/SPICE engineers in the semiconductor industry; graduate, research students and faculties at universities
Sensors for Stretchable Electronics in Nanotechnology discusses the fabrication of semiconducting materials, simple and cost-effective synthesis, and unique mechanisms that enable the fabrication of fully elastic electronic devices that can tolerate high strain. It reviews specific applications that directly benefit from highly compliant electronics, including transistors, photonic devices, and sensors. Discusses ultra-flexible electronics, highlighting its upcoming significance for the industrial-scale production of electronic goods Outlines the role of nanomaterials in fabricating flexible and multifunctional sensors and their applications in sensor technologies Covers graphene-based flexible and stretchable strain sensors Details various applications including wearable electronics, chemical sensors for detecting humidity, environmental hazards, pathogens, and biological warfare agents, and biosensors for detecting vital signals This book is a valuable resource for students, scientists, and professionals working in the research areas of sensor technologies, nanotechnology, materials science, chemistry, physics, biological and medical sciences, the healthcare industry, environmental science, and technology.
Advanced High Speed Devices covers five areas of advanced device technology: terahertz and high speed electronics, ultraviolet emitters and detectors, advanced III-V field effect transistors, III-N materials and devices, and SiC devices. These emerging areas have attracted a lot of attention and the up-to-date results presented in the book will be of interest to most device and electronics engineers and scientists. The contributors range from prominent academics, such as Professor Lester Eastman, to key US Government scientists, such as Dr Michael Wraback.
This book covers theoretical and practical aspects of all major steps in the fabrication sequence. This book can be used conveniently in a semester length course on integrated circuit fabrication. This text can also serve as a reference for practicing engineer and scientist in the semiconductor industry. IC Fabrication are ever demanding of technology in rapidly growing industry growth opportunities are numerous. A recent survey shows that integrated circuit currently outnumber humans in UK, USA, India and China. The spectacular advances in the development and application of integrated circuit technology have led to the emergence of microelectronic process engineering as an independent discipline. Integrated circuit fabrication text books typically divide the fabrication sequence into a number of unit processes that are repeated to form the integrated circuit. The effect is to give the book an analysis flavor: a number of loosely related topics each with its own background material. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. |
You may like...
Complexity of Lattice Problems - A…
Daniele Micciancio, Shafi Goldwasser
Hardcover
R6,602
Discovery Miles 66 020
Utilizing Blockchain Technologies in…
S. B. Goyal, Nijalingappa Pradeep, …
Hardcover
R6,170
Discovery Miles 61 700
Security and Privacy in the Age of…
Sabrina de Capitani di Vimercati, Pierangela Samarati, …
Hardcover
R2,931
Discovery Miles 29 310
Prosopis as a Heat Tolerant Nitrogen…
Maria Cecilia Puppo, Peter Felker
Paperback
R3,483
Discovery Miles 34 830
Smart Card Research and Advanced…
Josep Domingo-Ferrer, David Chan, …
Hardcover
R5,358
Discovery Miles 53 580
|