Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book looks at advanced nanocomposites, introducing long-awaited concepts towards bridging the gap between nanostructured optical materials and next-generation imaging systems. It investigates nanocomposites as bulk optical materials and highlights the immense potential they hold for real-world optical elements and systems, such as smartphone cameras. It covers the full spectrum of nanocomposite optical materials from their fundamental properties to analytical modeling and detailed application examples. This book also provides an in-depth discussion of the role these new materials play in the development of broadband flat optics - diffractive optical elements used for enhancing high-end broadband imaging systems. Written by an industry expert, this book seamlessly connects fundamental research and real-world applications. It is the ideal guide both for optical engineers working towards integrating new technologies, and researchers involved with fundamental research on optical materials.
This fourth book in the series Silicon Photonics gathers together reviews of recent advances in the field of silicon photonics that go beyond already established and applied concepts in this technology. The field of research and development in silicon photonics has moved beyond improvements of integrated circuits fabricated with complementary metal-oxide-semiconductor (CMOS) technology to applications in engineering, physics, chemistry, materials science, biology, and medicine. The chapters provided in this book by experts in their fields thus cover not only new research into the highly desired goal of light production in Group IV materials, but also new measurement regimes and novel technologies, particularly in information processing and telecommunication. The book is suited for graduate students, established scientists, and research engineers who want to update their knowledge in these new topics.
This book focuses on the essential scientific ideas and breakthroughs in the last three decades for organic solar cells that have realized practical applications. The motivation for publishing this book is to explain how those essential ideas have arisen and to provide a foundation for future progress by target readers-students, novices in the field, and scientists with expertise. The main topics covered in the book include the fundamental principles and history of organic solar cells, blended junction, nanostructure control, photocurrent generation, photovoltage generation, doping, practical organic solar cells, and possible ideas for the future. The editors enthusiastically anticipate the vigorous development of the field of organic solar cells by young scientists of the next generation.
This book highlights the overview of Spintronics, including What is Spintronics ?; Why Do We Need Spintronics ?; Comparative merit-demerit of Spintronics and Electronics ; Research Efforts put on Spintronics ; Quantum Mechanics of Spin; Dynamics of magnetic moments : Landau-Lifshitz-Gilbert Equation; Spin-Dependent Band Gap in Ferromagnetic Materials; Functionality of 'Spin' in Spintronics; Different Branches of Spintronics etc. Some important notions on basic elements of Spintronics are discussed here, such as - Spin Polarization, Spin Filter Effect, Spin Generation and Injection, Spin Accumulation, Different kinds of Spin Relaxation Phenomena, Spin Valve, Spin Extraction, Spin Hall Effect, Spin Seebeck Effect, Spin Current Measurement Mechanism, Magnetoresistance and its different kinds etc. Concept of Giant Magnetoresistance (GMR), different types of GMR, qualitative and quantitative explanation of GMR employing Resistor Network Theory are presented here. Tunnelling Magnetoresistance (TMR), Magnetic Junctions, Effect of various parameters on TMR, Measurement of spin relaxation length and time in the spacer layer are covered here. This book highlights the concept of Spin Transfer Torque (STT), STT in Ferromagnetic Layer Structures, STT driven Magnetization Dynamics, STT in Magnetic Multilayer Nanopillar etc. This book also sheds light on Magnetic Domain Wall (MDW) Motion, Ratchet Effect in MDW motion, MDW motion velocity measurements, Current-driven MDW motion, etc. The book deals with the emerging field of spintronics, i.e., Opto-spintronics. Special emphasis is given on ultrafast optical controlling of magnetic states of antiferromagnet, Spin-photon interaction, Faraday Effect, Inverse Faraday Effect and outline of different all-optical spintronic switching. One more promising branch i.e., Terahertz Spintronics is also covered. Principle of operation of spintronic terahertz emitter, choice of materials, terahertz writing of an antiferromagnetic magnetic memory device is discussed. Brief introduction of Semiconductor spintronics is presented that includes dilute magnetic semiconductor, feromagnetic semiconductor, spin polarized semiconductor devices, three terminal spintronic devices, Spin transistor, Spin-LED, and Spin-Laser. This book also emphasizes on several modern spintronics devices that includes GMR Read Head of Modern Hard Disk Drive, MRAM, Position Sensor, Biosensor, Magnetic Field sensor, Three Terminal Magnetic Memory Devices, Spin FET, Race Track Memory and Quantum Computing.
Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances.
The hard disk drive is one of the finest examples of the precision control of mechatronics, with tolerances less than one micrometer achieved while operating at high speed. Increasing demand for higher data density as well as disturbance-prone operating environments continue to test designers' mettle. Explore the challenges presented by modern hard disk drives and learn how to overcome them with Hard Disk Drive: Mechatronics and Control. Beginning with an overview of hard disk drive history, components, operating principles, and industry trends, the authors thoroughly examine the design and manufacturing challenges. They start with the head positioning servomechanism followed by the design of the actuator servo controller, the critical aspects of spindle motor control, and finally, the servo track writer, a critical technology in hard disk drive manufacturing. By comparing various design approaches for both single- and dual-stage servomechanisms, the book shows the relative pros and cons of each approach. Numerous examples and figures clarify and illustrate the discussion. Exploring practical issues such as models for plants, noise reduction, disturbances, and common problems with spindle motors, Hard Disk Drive: Mechatronics and Control avoids heavy theory in favor of providing hands-on insight into real issues facing designers every day.
With the ongoing, worldwide installation of 40 Gbit/s fiber optic transmission systems, there is an urgency to learn more about the photonic devices supporting this technology. Focusing on the components used to generate, modulate, and receive optical signals, High-Speed Photonic Devices presents the state-of- the-art enabling technologies behind high-speed telecommunication systems. Written by experts in the field, the book explores high-speed transmitters, receivers, electronics, and all-optical techniques. Following a brief introduction of the devices, the subsequent chapters cover... -High-speed, low-driving voltage electroabsorption modulators and their integration with distributed-feedback lasers for high-bitrate and long-haul optical fiber transmission systems -Linear electro-optic Ti-diffused LiNbO3 devices, specifically, traveling-wave high-speed modulators -III-V compound semiconductor electro-optic modulators -High-speed polymer device technology and numerous examples of new material combinations -Fundamental physical processes used in common photodetectors as well as some emerging photodetector designs -High-speed electronic devices and integrated circuit technologies for very high-speed future lightwave communication systems -Very high-speed all-optical technologies required for multi-terabit/s optical fiber transmission systems. Although it is hard to predict which particular technology will prevail in the future, you can be sure that the systems discussed in High-Speed Photonic Devices will help pave the way for low-cost, high-performance fiber optic networks that will cover the entire globe. This improved and easily accessible communications capability will no doubtbetter the quality of life for everyone.
Less than a decade ago, lead halide perovskite semiconductors caused a sensation: Solar cells exhibiting astonishingly high levels of efficiency. Recently, it became possible to synthesize nanocrystals of this material as well. Interestingly; simply by controlling the size and shape of these crystals, new aspects of this material literally came to light. These nanocrystals have proven to be interesting candidates for light emission. In this thesis, the recombination, dephasing and diffusion of excitons in perovskite nanocrystals is investigated using time-resolved spectroscopy. All these dynamic processes have a direct impact on the light-emitting device performance from a technology point of view. However, most importantly, the insights gained from the measurements allowed the author to modify the nanocrystals such that they emitted with an unprecedented quantum yield in the blue spectral range, resulting in the successful implementation of this material as the active layer in an LED. This represents a technological breakthrough, because efficient perovskite light emitters in this wavelength range did not exist before.
Advances in Imaging and Electron Physics, Volume 224 highlights new advances in the field, with this new volume presenting interesting chapters on Measuring elastic deformation and orientation gradients by scanning electron microscopy - conventional, new and emerging methods, Development of an alternative global method with high angular resolution, Implementing the new global method, Numerical validation of the method and influence of optical distortions, and Applications of the method.
Introducing graduate students in physics, optics, materials science and electrical engineering to surface plasmons, this book also covers guided modes at planar interfaces of metamaterials with negative refractive index. The physics of localized and propagating surface plasmons, on planar films, gratings, nanowires and nanoparticles, is developed using both analytical and numerical techniques. Guided modes at the interfaces between materials with any combination of positive or negative permittivity and permeability are analyzed in a systematic manner. Applications of surface plasmon physics are described, including near-field transducers in heat-assisted magnetic recording and biosensors. Resources at www.cambridge.org/9780521767170 include Mathematica code to generate figures from the book, color versions of many figures, and extended discussion of topics such as vector diffraction theory.
It has been noted several times previously that the Rare Earths (RE), a sequence of elements with atomic numbers in the range from 58 (Ce) to 71 (Lu), are neither earths nor particularly rare. They are metals, whose ores are often found together with oxides of the "alkaline earths" (Ca, Mg), staples of the building industry, th while Cerium, for example, is the 25 most abundant element in the Earth's crust. However, the chemical similarity of all REs to each other and to Lanthanum, reflected in their alternative descriptor, Lanthanoids, made extraction of the separate elements difficult until technical advances in the 1960s kick-started the modern era of RE science. The most widespread commercial use of RE metals at present is in the prod- tion of super-strong permanent magnets, containing Neodymium: check your refrigerator door for an example. RE ferromagnetism arises from the angular momentum of electrons in partially filled 4f atomic shells. In chemical compounds of RE with non-metals, the 4f shell is surrounded by filled 5s and 5p orbitals, 1 2 while bonding involves the outerlying 5d and 6s electrons, resulting (usually) in 3+ 3+ a RE ion that is chemically similar to La . (RE may also be found in a divalent charge state, with an 'extra' electron in the 5d shell. ) Hence the sequence of 3+ 3+ trivalent ions from Ce to Yb is characterised by a 4f shell occupation that rises from 1 to 13 electrons.
This book presents the latest achievements of Russian scientists in the field of theory and practice of decision-making in SEMS, taking into account the information received from the sensors of its central nervous system (CNS). Recently, in the field of theory and practice of intelligent robotics systems management, the solution to the problem of SEMS type urgent task of making decisions about their expedient behavior is based on the integration of the processes of obtaining, processing and storing information, computing, control and monitoring. This enables the efficiency, reliability and safety of operation of SEMS in real time. Decision-making methods are described, both in the autonomous behavior of SEMS and in their group interaction, based on the principles of bionics, adaptability, intelligence and parallelism in information processing and computation. This book is intended for students, scientists and engineers specializing in the field of smart electromechanical systems and robotics.
This book is the volume of the proceedings for the 17th Edition of ISER. The goal of ISER (International Symposium on Experimental Robotics) symposia is to provide a single-track forum on the current developments and new directions of experimental robotics. The series has traditionally attracted a wide readership of researchers and practitioners interested to the advances and innovations of robotics technology. The 54 contributions cover a wide range of topics in robotics and are organized in 9 chapters: aerial robots, design and prototyping, field robotics, human-robot interaction, machine learning, mapping and localization, multi-robots, perception, planning and control. Experimental validation of algorithms, concepts, or techniques is the common thread running through this large research collection. Chapter "A New Conversion Method to Evaluate the Hazard Potential of Collaborative Robots in Free Collisions" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book discusses the recent advances in the wastes recycling technologies to provide low-cost and alternative ways for nanomaterials production. It shows how carbon nanomaterials can be synthesized from different waste sources such as banana fibers, argan (Argania spinosa) seed shells, corn grains, camellia oleifera shell, sugar cane bagasse, oil palm (empty fruit bunches and leaves) and palm kernel shells. Several nanostructured metal oxides (MnO2, Co3O4,....) can be synthesized via recycling of spent batteries. The recovered nanomaterials can be applied in many applications including: Energy (supercapacitors, solar cells, etc.) water treatments (heavy metal ions and dyes removal) and other applications. Spent battery and agriculture waste are rich precursors for metals and carbon, respectively. The book also explores the various recycling techniques, agriculture waste recycling, batteries recycling, and different applications of the recycled materials.
Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.
This book discusses theoretical and experimental advances in metamaterial structures, which are of fundamental importance to many applications in microwave and optical-wave physics and materials science. Metamaterial structures exhibit time-reversal and space-inversion symmetry breaking due to the effects of magnetism and chirality. The book addresses the characteristic properties of various symmetry breaking processes by studying field-matter interaction with use of conventional electromagnetic waves and novel types of engineered fields: twisted-photon fields, toroidal fields, and magnetoelectric fields. In a system with a combined effect of simultaneous breaking of space and time inversion symmetries, one observes the magnetochiral effect. Another similar phenomenon featuring space-time inversion symmetries is related to use of magnetoelectric materials. Cross-coupling of the electric and magnetic components in these material structures, leading to the appearance of new magnetic modes with an electric excitation channel - electromagnons and skyrmions - has resulted in a wealth of strong optical effects such as directional dichroism, magnetochiral dichroism, and rotatory power of the fields. This book contains multifaceted contributions from international leading experts and covers the essential aspects of symmetry-breaking effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement. It is ideally suited as an introduction and basic reference work for researchers and graduate students entering this field.
This book presents innovative ideas and technical contributions in the area of metasurfaces and antenna technologies. On the one hand, it presents an effective method to analyze metasurfaces constituted by metallic texture with certain geometries. It shows how this method can be applied to the design of metasurface (MTS) antennas for deep space communications and other planar microwave devices. On the other hand, the book reports on a general methodology developed for analyzing flat devices realized by using modulated MTSs, which opens new design possibilities for a large number of microwave devices based on the manipulation of SWs. Finally, a novel approach of reconfigurability, which is based on a class of checkerboard MTS, is explored. All in all, this book covers important insights and significant results on the emerging topic of metasurfaces, from theoretical and computational aspects to experiments.
A comprehensive look combining experimental and theoretical approaches to graphene, nanotubes, and quantum dots-based nanotechnology evaluation and development are including a review of key applications. Graphene, nanotubes, and quantum dots-based nanotechnology review the fundamentals, processing methods, and applications of this key materials system. The topics addressed are comprehensive including synthesis, preparation, both physical and chemical properties, both accepted and novel processing methods, modeling, and simulation. The book provides fundamental information on key properties that impact performance, such as crystal structure and particle size, followed by different methods to analyze, measure, and evaluate graphene, nanotubes, and quantum dots-based nanotechnology and particles. Finally, important applications are covered, including different applications of biomedical, energy, electronics, etc. Graphene, nanotubes, and quantum dots-based nanotechnology is appropriate for those working in the disciplines of nanotechnology, materials science, chemistry, physics, biology, and medicine.
This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.
Are electrochemical methods like asking the crystal ball? Once you read this book about electrochemistry on the micro- and nanoscale, you know it better. This textbook presents the essentials of electrochemical theory, sheds light on the instrumentation, including details on the electronics, and in the second part, discusses a wide variety of classical and advanced methods. The third part of the book covers how to apply the techniques for selected aspects of material science, microfabrication, nanotechnology, MEMS, NEMS, and energy applications. With this book, you will be able to successfully apply the methods in the fields of sensors, neurotechnology, biomedical engineering, and electrochemical energy systems. Undergraduate or Master students can read the book linearly as a comprehensive textbook. For Ph.D. students, postdoctoral researchers as well as for researchers in industry, the book will help by its clear structure to get fast answers from a specific section. The detailed understanding of the methods helps the reader successfully apply electrochemistry, especially at the micro- and nanoscale. Selected aspects illustrate the application of electrochemical methods in the fields of sensors, neurotechnology, biomedical engineering, and electrochemical energy systems.
Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 4 of the Proceedings of the 2020 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: DIC Methods & Its Applications Photoelsticity and Interferometry ApplicationsMicro-Optics and Microscopic SystemsMultiscale
Xenes: 2D Synthetic Materials Beyond Graphene includes all the relevant information about Xenes thus far reported, focusing on emerging materials and new trends. The book's primary goal is to include full descriptions of each Xene type by leading experts in the area. Each chapter will provide key principles, theories, methods, experiments and potential applications. The book also reviews the key challenges for synthetic 2D materials such as characterization, modeling, synthesis, and integration strategies. This comprehensive book is suitable for materials scientists and engineers, physicists and chemists working in academia and R&D in industry. The discovery of silicene dates back to 2012. Since then, other Xenes were subsequently created with synthetic methods. The portfolio of Xenes includes different chemical elements of the periodic table and hence the related honeycomb-like lattices show a wealth of electronic and optical properties that can be successfully exploited for applications.
Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering.
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. |
You may like...
New Advances in Semiconductors
Alberto Adriano Cavalheiro
Hardcover
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,251
Discovery Miles 42 510
Polyimide for Electronic and Electrical…
Sombel Diaham
Hardcover
Complementary Metal Oxide Semiconductor
Kim Ho Yeap, Humaira Nisar
Hardcover
Modelling Methodologies in Analogue…
Gunhan Dundar, Mustafa Berke Yelten
Hardcover
Progress in Ultrafast Intense Laser…
Kaoru Yamanouchi, Katsumi Midorikawa, …
Hardcover
R7,362
Discovery Miles 73 620
Impact of Digital Twins in Smart Cities…
Ingrid Vasiliu Feltes
Hardcover
R6,716
Discovery Miles 67 160
|