Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
Presents the first comprehensive book on electronics for vinyl High-level, practical information with minimal mathematics Includes topics such as low-noise amplification, proper cartridge loading, equalisation for archival recordings, and more Includes tricks and innovations from an expert author
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore's law. This observation stated that transistor density in integrated circuits doubles every 1. 5-2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore's law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
The average car now contains much more electronic circuitry than would have been the case, even five years ago. This leaves many technicians struggling to keep up with current developments in the repair and maintenance of these electronic systems. Often, texts covering vehicle electronics dwell on unnecessary maths and general electronics principles. This practical guide discusses electronics ony within the context of the vehicle system under consideration and thus keeps theory to a minimum. Using numerous diagrams, photographs and step by step instructions, this book gives a clear description of vehicle electronic systems and fault diagnosos and than continues on to the testing and repair of these systems. Regular reviews and summaries help consolidate learning and make this book ideal for workshop and classroom use.
This book offers a bird's-eye view of the recent development trends in photovoltaics - a big business field that is rapidly growing and well on its way to maturity. The book describes current efforts to develop highly efficient, low-cost photovoltaic devices based on crystalline silicon, III-V compounds, copper indium gallium selenide (CIGS) and perovskite photovoltaic cells along with innovative, cost-competitive glass/ flexible tubular glass concentrator modules and systems, highlighting recent attempts to develop highly efficient, low-cost, flexible photovoltaic cells based on CIGS and perovskite thin films. This second edition presents, for the first time, the possible applications of perovskite modules together with Augsburger Tubular photovoltaics.
Interfaces between dissimilar materials are met everywhere in microelectronics and microsystems. In order to ensure faultless operation of these highly sophisticated structures, it is mandatory to have fundamental understanding of materials and their interactions in the system. In this difficult task, the traditional method of trial and error is not feasible anymore; it takes too much time and repeated efforts. In "Interfacial Compatibility in Microelectronics," an alternative approach is introduced. In this revised method four fundamental disciplines are combined: i) thermodynamics of materials ii) reaction kinetics iii) theory of microstructures and iv) stress and strain analysis. The advantages of the method are illustrated in "Interfacial Compatibility in Microelectronics" which includes: solutions to several common reliability issues in microsystem technology, methods to understand and predict failure mechanisms at interfaces between dissimilar materials and an approach to DFR based on deep understanding in materials science, rather than on the use of mechanistic tools, such as FMEA. Interfacial Compatibility in Microelectronics provides a clear and methodical resource for graduates and postgraduates alike."
This book is a comprehensive introduction to the rapidly developing field of PEM fuel cells. It covers the fundamentals and basic concepts of different types of fuel cells as well as recent developments of PEM fuel cells. Components, diagnostics, performance and characterization are discussed and modelling and novel applications are covered. Written by experts in this field, this book is an invaluable tool for graduate students and professionals.
The MOS 2016 Study Guide for Microsoft Outlook covers Microsoft Outlook 2016, specifically the skills required to pass the Outlook 2016 Microsoft Office Specialist exam. The Microsoft Office Specialist Study Guides provide concise descriptions of the tasks that certification candidates must demonstrate to pass the Microsoft Office Specialist exams, step-by-step procedures for performing those tasks, practice tasks based on the MOS exam approach, sample files for practicing the tasks, and solution files so you can check your work.
The application of molecules in technological devices hinges on the
proper understanding of their behavior on metallic electrodes or
substrates. The intrinsic molecular electronic and magnetic
properties are modified at a metallic interface, and greatly depend
on the atomic configuration of the molecule-metal bond. This poses
certain problems, such as the lack of reproducibility in the
transport properties of molecular junctions, but also offers the
possibility to induce new charge and spin configurations that are
only present at the interface. The results presented in this thesis
address this issue, providing a comprehensive overview of the
influence of molecule-metal and molecule-molecule interactions on
the electronic and magnetic properties of molecules adsorbed on
metallic substrates. Using metal-phthalocyanines (MePc), a commonly
used metal-organic complex as a model system, each chapter explores
different aspects of the interaction with silver surfaces: the
local adsorption geometry, self-assembly, the modifications of the
electronic and magnetic characteristics due to hybridization and
charge transfer, and finally the manipulation of molecular charge
and spin states by electron doping using alkali atoms moved with
the STM tip.
This book examines both the potential application of electronic nose technology, and the current state of development of chemical sensors for the detection of vapours from explosives, such as those used in landmines. The two fields have developed, somewhat in parallel, over the past decade and so one of the purposes of this workshop, on which the book is based, was to bring together scientists from the two fields in order to challenge the two communities and, mutually, stimulate both fields. It begins with a review of the basic principles of an electronic nose and explores possible ways in which the detection limit of conventional electronic nose technology can be reduced to the level required for the trace levels observed for many explosive materials. Next are reviews of the use of several different types of solid-state chemical sensors: polymer-based sensors, i.e. chemiluminescent, fluorescent and optical, to detect explosive materials; metal oxide semiconducting resistive sensors; and then electrochemical sensors. Next, different pattern recognition techniques are presented to enhance the performance of chemical sensors. Then biological systems are considered as a possible blue-print for chemical sensing. The biology can be employed either to understand the way insects locate odorant sources, or to understand the signal processing neural pathways. Next is a discussion of some of the new types of electronic noses; namely, a fast GC column with a SAW detector and a micromechanical sensor. Finally, the important issues of sampling technologies and the design of the microfluidic systems are considered. In particular, the use of pre-concentrators and solid phase micro extractors to boost the vapour concentration before it is introduced to the chemical sensor or electronic nose.
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.
S. Di Bella, C. Dragonetti, M. Pizzotti, D. Roberto, F. Tessore, R. Ugo: Coordination and Organometallic Complexes as Second-Order Nonlinear Optical Molecular Materials.- M. G. Humphrey, M.P. Cifuentes, M. Samoc: NLO Molecules and Materials Based on Organometallics: Cubic NLO Properties.- L. Murphy, J. A. G. Williams: Luminescent Platinum Compounds: From Molecules to OLEDs. - Z. Liu, Z. Bian, C. Huang: Luminescent Iridium Complexes and Their Applications.- N. C. Fletcher, M. C. Lagunas: Chromo- and Fluorogenic Organometallic Sensors.- V. Guerchais, H. Le Bozec: Metal Complexes Featuring Photochromic Ligands.
This book is loosely based on a Multidisciplinary University Research Initiative (MURI) project and a few supplemental projects sponsored by the Of?ce of Naval Research (ONR) during the time frame of 2004-2009. The initial technical scope and vision of the MURI project was formulated by Drs. Larry Cooper and Joel Davis, both program of?cers at ONR at the time. The unifying theme of this MURI project and its companionefforts is the concept of cellular nonlinear/neuralnetwork (CNN) technology and its various extensions and chip implementations, including nanoscale sensors and the broadening ?eld of cellular wave computing. In recent years, CNN-based vision system drew much attention from vision scientists to device technologists and computer architects. Due to its early - plementation in a two-dimensional (2D) topography, it found success in early vision technologyapplications, such as focal-plane arrays, locally adaptable sensor/ processor integration, resulting in extremely high frame rates of 10,000 frames per second. More recently it drew increasing attention from computer architects, due to its intrinsic local interconnect architecture and parallel processing paradigm. As a result, a few spin-off companies have already been successful in bringing cel- lar wave computing and CNN technology to the market. This book aims to capture some of the recent advances in the ?eld of CNN research and a few select areas of applications.
The morphology that results during the growth of a material on the substrate of a different material is central to the fabrication of all quantum heterostructures. This morphology is determined by several factors, including the manner in which strain is accommodated if the materials have different lattice constants. One of the most topical manifestations of lattice mis't is the formation of coherent thr- dimensional(3D)islandsduringtheStranski-Krastanovgrowthofahighly-strained system. The prototypical cases are InAs on GaAs(001) and Ge on Si(001), though other materials combinations also exhibit this phenomenon. When the 3D islands are embedded within epitaxiallayers of a material that has a wider band gap, the carriers within the islands are con?ned by the potential barriers that surround each island, forming an array of quantum dots (QDs). Such structures have been produced for both basic physics studies and device fab- cation, including QD lasers and light-emitting diodes (LEDs) operating at the c- mercially important wavelengths of 1.3 u m and 1.55 u m. On a more speculative level, QD ensembles have been suggested as a possible pathway for the solid-state implementation of a quantum computer. Although some of the principles of qu- tum computing have been veri?ed by other means, the practical utilization of this new computingparadigmmay warrant some sort of solid state architecture. QDs are seen as possible components of such a computer, as evidenced by a number of papersappearingintheliteratureproposingQD-basedarchitecturesandworkshops that are being organized to explore these possibilities."
Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devices Discusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modeling Explores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysis Investigates spintronic device write and read optimization in light of spintronic memristive effects Considers spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effects Proposes unique solutions for low-power spintronic device applications where memory is closely integrated with logic Metallic Spintronic Devices aims to equip anyone who is serious about metallic spintronic devices with up-to-date design, modeling, and processing knowledge. It can be used either by an expert in the field or a graduate student in course curriculum.
This book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.
Hybrid Nanomaterials for Sustainable Applications: Case Studies and Applications brings together the latest advances in hybrid nanocomposites and their diverse applications for improved sustainability. The book begins by introducing hybrid nanomaterials, synthesis strategies, and approaches to production for engineering applications. Subsequent sections provide chapters on key application areas, including water purification, nanobiotechnologies, energy storage, and biomedicine, presenting approaches for sustainable application for each usage. Throughout the book, key challenges are addressed, with case studies used to support implementation and improve end applications. This is a valuable resource for researchers and advanced students in nanotechnology, polymer science, sustainable materials, chemistry, chemical engineering, environmental science, and materials engineering, as well as industrial scientists, engineers, and R&D professionals with an interest in hybrid nanomaterials for a range of applications.
In recent years, graphene based research has witnessed a tremendous explosion. This two dimensional "dream" material has come into the main spotlight of fundamental and applied research in diverse nano-science fields, but surprisingly rapidly, it has also attracted the interest of major stakeholders in the private sector (especially industries in the ICT sector). The technological exploitation of graphene can be considered to be based on four fundamental interconnected wide topics: growth and synthesis methods, nano-structuring and tailoring of graphene properties, structural and physical characterization, and device design and applications. This proceedings book presents the results highlighted at GraphITA 2011, a multidisciplinary and intersectorial European Workshop on Synthesis, Characterization and Technological Exploitation of Graphene. The workshop realised on 15-18 May at Gran Sasso National Laboratories (Assegi-L'Aquila, Italy) has brought together scientists and engineers working on different technological uses of graphene in a multidisciplinary and multisectorial (academia/industry) environment.
This book explains the principles of biosignal processing and its practical applications using MATLAB. Topics include the emergence of biosignals, electrophysiology, analog and digital biosignal processing, signal discretization, electrodes, time and frequency analysis, analog and digital filters, Fourier-transformation, z-transformation, pattern recognition, statistical data analysis, physiological modelling and applications of EEG, ECG, EMG, PCG and PPG signals. Additional scientifi c contributions on motion analysis by guest authors Prof. Dr. J. Subke and B. Schneider as well as classification of PPG signals by Dr. U. Hackstein.
Acknowledging that DRAM, together with NAND Flash, is driving semiconductor technologies with a wide spectrum of usage--ranging from PC, mobile phone, and digital home appliances--this survey implicates the potential of floating body cell (FBC) properties in further increasing the bit density in electronic devices. Detailing FBC's operational principles and the scaling guideline, along with many simulation and hardware measurements results, which support the theoretical and simulated predictions on FBC properties, this summary provides authoritative insight on the future directions of FBC technologies.
PART I: sets the stage, provides context, reviews some of the prerequisite topics and gives a taste of what is to come in the rest of the book. Included are two refresher-type chapters on digital circuits and components, a discussion of types of computer systems, an overview of digital computer technology, and a detailed perspective on computer system 3erformance. PART II:lays out the user's interface to computer hardware known as the instruction-set architechture (ISA). For better understanding, the instruction set of MiniMIPS (a simplified, yet very realistic, machine for which open reference material and simulation tools exist) is described. Included is a chapter on variations in ISA (e.g. RISC vs CISC) and associated cost performace tradeoffs. The next two parts cover the central processing unit (CPU). PART III: describes the structure of arithmetic/logic units (ALUs) in some detail. Included are discussions of fixed- and floating-point number representations, design of high-speed adders, shift and logical operations, and hardware multipliers/dividers. Implementation aspects and pitfalls of floating-point arthimetic are also discussed. PART IV: is devoted to data path and control circuits comprising the CPU. Beginning with instruction execution steps, the needed components and control mechanisms are derived. These are followed by an exposition of control design strategies, use of a pipelined data path for performance enhancement, and various limitations of pipelining due to data and control dependencies. PART V: concerned with the memory system. The technologies in use for primary and secondary memories are described, along with their strengths and limitations. It is shown how the use of cache memories effectively bridges the speed gap between CPU and main memory. Similarly, the use of virtual memory to provide the illusion of a vast main memory is explained. PART VI: deals with input/output and interfacing topics. A discussion of I/O device technologies is followed by methods of I/O programming and the roles of buses and links (including standards) in I/O communication and interfacing. Elements of processes and context switching, for exception handling or multireaded computation, are also covered. PART VII: introduces advanced architectures. An overview of performance enhancement strategies, beyond simple pipelining, is presented and examples of applications requiring higher performance are cited. These are followed by design strategies and example architectures based on vector or array proccessing, multiprocessing, and multicomputing.
Wo Licht ist, ist auch Schatten! ("More light, more shadow!" or simpler: "Nothing is perfect") -Johann Wolfgang von Goethe, from Got .. z von Berlichingen, Act I There exist already about ten books (e. g. [1-8]) - not counting the many conf- enceproceedingsvolumes- onthe differentaspectsofSi-basedphotonicsincluding also the issue of silicon-basedlight emission. Why is now anotherone neededabout this subject, and even more, exclusively about a special type of light emitters? This book summarizes all aspects of the development of rare earth (RE) c- taining MOS devices fabricated by ion implantation as the key technology and critically re ects the related referencesthroughoutthe different chapters. This work was mainly done in the course of the last 10 years. Preliminary work for this goal, undertaken mostly in the nineties, was based on the introduction of group IV e- ments (Si, Ge, Sn) into the thermally grown silicon dioxide leading to the highest power ef ciency values in the blue-violet wavelength range. This success inspired us to use the REs as means of exploring other wavelength ranges with the same or even higher power ef ciencies. After an historical introduction of the REs and silicon-based light emission, Chap. 1 presents a review of electroluminescence from MOS-type light emitters, based on silicon and its technology. The achievement of an optimized material for electrically driven light emission, that is, ef cient emission with reasonable reliability, is only possible with a deep knowledge of the materials properties det- miningtheelectro-optical(orphotonic)properties(seeChap. 2).
The Electrocaloric Effect: Materials and Applications reviews the fundamentals of the electrocaloric effect, the most relevant electrocaloric materials, and electrocaloric measurements and device applications. The book introduces the electrocaloric effect, along with modeling and simulations of this effect. Then, it addresses the latest advances in synthesis, characterization and optimization of the most relevant electrocaloric materials, including ferroelectric materials, liquid materials, lead-free materials, polymers and composites. Finally, there is a review of the latest techniques in measurement and applications in refrigeration and cooling and a discussion of the advantages, challenges and perspectives of the future of electrocaloric refrigeration.
Originally published in 1916, as part of the Cambridge Technical Series, this book was written to provide a guide to the laws governing the flow of alternating currents in circuits and an account regarding different types of alternating current machines. Illustrative figures are included. This book will be of value to anyone with an interest in alternating currents and the history of science.
An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors. |
You may like...
Perovskites and other framework…
Pierre Saint-Gregoire, Mikhail Smirnov
Hardcover
R2,250
Discovery Miles 22 500
Impact of Digital Twins in Smart Cities…
Ingrid Vasiliu Feltes
Hardcover
R6,716
Discovery Miles 67 160
New Advances in Semiconductors
Alberto Adriano Cavalheiro
Hardcover
Zero Index Metamaterials - Trends and…
Nishant Shankhwar, Ravindra Kumar Sinha
Hardcover
R3,268
Discovery Miles 32 680
Modelling Methodologies in Analogue…
Gunhan Dundar, Mustafa Berke Yelten
Hardcover
|