![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.
Quantum wires are artificial structures characterized by nanoscale cross sections that contain charged particles moving along a single degree of freedom. With electronic motions constrained into standing modes along with the two other spatial directions, they have been primarily investigated for their unidimensional dynamics of quantum-confined charge carriers, which eventually led to broad applications in large-scale nanoelectronics. This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of these unidimensional semiconductor structures. The articles address the effect of quantum confinement on lattice vibrations, carrier scattering rates, and charge transport as well as present practical examples of solutions to the Boltzmann equation by analytical techniques and by numerical simulations such as the Monte Carlo method. The book also presents topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons in terms of non-equilibrium Green’s function approaches and density functional theory.
Metamaterials artificially structured materials with engineered electromagnetic properties have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. This book details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlens and cloaking devices are also treated in detail and made understandable. The planned monograph can serve as a very timely book for both newcomers and advanced researchers in this extremely rapid evolving field."
This thesis presents the discovery of a surprising phase transition between a topological and a broken symmetry phase. Phase transitions between broken symmetry phases involve a change in symmetry and those between topological phases require a change in topological order; in rare cases, however, transitions may occur between these two broad classes of phases in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. This thesis describes observations of such a special phase transition in the two-dimensional electron gas confined in the GaAs/AlGaAs structures. When tuned by hydrostatic pressure, the = 5/2 and = 7/2 fractional quantum Hall states, believed to be prototypical non-Abelian topological phases of the Pfaffian universality class, give way to an electronic nematic phase. Remarkably, the fractional quantum Hall states involved are due to pairing of emergent particles called composite fermions. The findings reported here, therefore, provide an interesting example of competition of pairing and nematicity. This thesis provides an introduction to quantum Hall physics of the two-dimensional electron gas, contains details of the high pressure experiments, and offers a discussion of the ramifications and of the origins of the newly reported phase transition.
New to this edition: Updated to using OrCAD Release 17.2 and its new features; Coverage of PSPICE extra features: PSpice Designer, PSpice Designer Plus, Modelling Application, PSpice Part Search Symbol Viewer, PSpice Report, Associate PSpice model, New delay functions for Behavioural Simulation Models, New Models, Support for negative values in hysteresis voltage and threshold voltage; A new chapter on PSpice Advanced Analysis Analog Design and Simulation Using OrCAD Capture and PSpice, Second Edition provides step-by-step instructions on how to use the Cadence/OrCAD family of Electronic Design Automation software for analog design and simulation. The book explains how to enter schematics in Capture, set up project types, project libraries and prepare circuits for PSpice simulation. There are chapters on the different analysis types for DC Bias point, DC sweep, AC frequency sweep, Parametric analysis, Temperature analysis, Performance Analysis, Noise analysis, Sensitivity and Monte Carlo simulation. Subsequent chapters explain how the Stimulus Editor is used to define custom analog and digital signals, how the Model Editor is used to view and create new PSpice models and Capture parts and how the Magnetic Parts Editor is used to design transformers and inductors. Other chapters include Analog Behaviorial models, Test Benches as well as how to create hierarchical designs. The book includes the latest features in the OrCAD 17.2 release and there are exercises with step by step instructions at the end of each chapter that enables the reader to progress based upon their experience and knowledge gained from previous chapters. The author worked for Cadence for over eight years and supported and delivered OrCAD PSpice training courses all over Europe. This book has been endorsed by Cadence. In addition, there are new chapters on the PSpice Advanced Analysis suite of tools: Sensitivity Analysis, Optimizer, Monte Carlo, and Smoke Analysis.The chapters show how circuit performance can effectively be maximised and optimised for variations in component tolerances, temperature effects, manufacturing yields and component stress.
This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic elements into the nano regime for enhanced performance, faster operational speed, greater bandwidth, and higher level of integration. Showcases the integration of MEMS and optical/photonic devices into real commercial products. Addresses applications in optical telecommunication, sensing, imaging, and biomedical systems. Prof. Vincent C. Lee is Associate Professor in the Department of Electrical and Computer Engineering, National University of Singapore. Prof. Guangya Zhou is Associate Professor in the Department of Mechanical Engineering at National University of Singapore.
Multilevel Inverters: Conventional and Emerging Topologies and Their Control is written with two primary objectives: (a) explanation of fundamentals of multilevel inverters (MLIs) with reference to the general philosophy of power electronics; and (b) enabling the reader to systematically analyze a given topology with the possibility of contributing towards the ongoing evolution of topologies. The authors also present an updated status of current research in the field of MLIs with an emphasis on the evolution of newer topologies. In addition, the work includes a universal control scheme, with which any given topology can be modulated. Extensive qualitative and quantitative evaluations of emerging topologies give researchers and industry professionals suitable solutions for specific applications with a systematic presentation of software-based modeling and simulation, and an exploration of key issues. Topics covered also include power distribution among sources, voltage balancing, optimization switching frequency and asymmetric source configuration. This valuable reference further provides tools to model and simulate conventional and emerging topologies using MATLAB (R)/Simulink (R) and discusses execution of experimental set-up using popular interfacing tools. The book includes a Foreword by Dr. Frede Blaabjerg, Fellow IEEE, Professor and VILLUM Investigator, Aalborg University, Denmark.
This book serves as a quick guide on the latest material systems including their synthesis, fabrication and characterization techniques. It discusses recent developments in different material systems and discusses their novel applications in various branches of science and engineering. The book briefs latest computational tools and techniques that are used to discover new material systems. The book also briefs applications of new emerging materials in various fields including, healthcare, sensors, opto-electronics, high power devices and nano-electronics. This book helps to create a synergy between computational and experimental research methods to better understand a particular material system.
Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, Second Edition reviews the fabrication, performance and applications of the technology, encompassing the state-of-the-art material and device development, along with considerations regarding nitride-based LED design. This updated edition is based on the latest research and advances, including two new chapters on LEDs for large displays and laser lighting. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques, the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. The book also addresses the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. It is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors.
This book provides in-depth coverage of smart materials, including electroactive polymers (EAPs), synthetic muscle, pneumatic artificial muscle, soft pneumatics, hydro-muscle, and other cutting-edge transformational smart material technologies. It looks at ways smart materials respond to stimuli, such as electricity, pressure, temperature, magnetism, or light. State-of-the-art developments in EAP based actuation and pneumatics are covered, including nanotechnology, soft robotics, EAP considerations for NASA applications and thermal control of satellites, control of mirrors using dielectric elastomeric actuators, and biomimetic design and function in robotics and prosthetics. A detailed analysis of the challenges of smart materials on Earth and in space is included, with an interview about considerations and training for Missions to Moon and Mars. This book is a must-read within the smart material and space communities, from tech savvy students to industry professionals.
This edited book designs the Cognitive Computing in Human Cognition to analyze to improve the efficiency of decision making by cognitive intelligence. The book is also intended to attract the audience who work in brain computing, deep learning, transportation, and solar cell energy. Due to this in the recent era, smart methods with human touch called as human cognition is adopted by many researchers in the field of information technology with the Cognitive Computing.
This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.
In recent years, there has been a considerable amount of effort, both in industry and academia, focusing on the design, implementation, performance analysis, evaluation and prediction of silicon photonic interconnects for inter- and intra-chip communication, paving the way for the design and dimensioning of the next and future generation of high-performance computing systems. Photonic Interconnects for Computing Systems provides a comprehensive overview of the current state-of-the-art technology and research achievements in employing silicon photonics for interconnection networks and high-performance computing, summarizing main opportunities and some challenges. The majority of the chapters were collected from presentations made at the International Workshop on Optical/Photonic Interconnects for Computing Systems (OPTICS) held over the past two years. The workshop invites internationally recognized speakers on the range of topics relevant to silicon photonics and computing systems. Technical topics discussed in the book include: Design and Implementation of Chip-Scale Photonic Interconnects; Developing Design Automation Solutions for Chip-Scale Photonic Interconnects; Design Space Exploration in Chip-Scale Photonic Interconnects; Thermal Analysis and Modeling in Photonic Interconnects; Design for Reliability; Fabrication Non-Uniformity in Photonic Interconnects; Photonic Interconnects for Computing Systems presents a compilation of outstanding contributions from leading research groups in the field. It presents a comprehensive overview of the design, advantages, challenges, and requirements of photonic interconnects for computing systems. The selected contributions present important discussions and approaches related to the design and development of novel photonic interconnect architectures, as well as various design solutions to improve the performance of such systems while considering different challenges. The book is ideal for personnel in computer/photonic industries as well as academic staff and master/graduate students in computer science and engineering, electronic engineering, electrical engineering and photonics.
Explains the circuit design of silicon optoelectronic integrated circuits (OEICs), which are central to advances in wireless and wired telecommunications. The essential features of optical absorption are summarized, as is the device physics of photodetectors and their integration in modern bipolar, CMOS, and BiCMOS technologies. This information provides the basis for understanding the underlying mechanisms of the OEICs described in the main part of the book. In order to cover the topic comprehensively, Silicon Optoelectronic Integrated Circuits presents detailed descriptions of many OEICs for a wide variety of applications from various optical sensors, smart sensors, 3D-cameras, and optical storage systems (DVD) to fiber receivers in deep-sub-m CMOS. Numerous detailed illustrations help to elucidate the material.
Coined as the third revolution in electronics is under way; Manufacturing is going digital, driven by computing revolution, powered by MOS technology, in particular, by the CMOS technology and its development.In this book, the scaling challenges for CMOS: SiGe BiCMOS, THz and niche technology are covered; the first article looks at scaling challenges for CMOS from an industrial point of view (review of the latest innovations); the second article focuses on SiGe BiCMOS technologies (deals with high-speed up to the THz-region), and the third article reports on circuits associated with source/drain integration in 14 nm and beyond FinFET technology nodes. Followed by the last two articles on niche applications for emerging technologies: one deals with carbon nanotube network and plasmonics for the THz region carbon, while the other reviews the recent developments in integrated on-chip nano-optomechanical systems.
This book reviews the most significant advances in concepts, methods, and applications of quantum systems in a broad variety of problems in modern chemistry, physics, and biology. In particular, it discusses atomic, molecular, and solid structure, dynamics and spectroscopy, relativistic and correlation effects in quantum chemistry, topics of computational chemistry, physics and biology, as well as applications of theoretical chemistry and physics in advanced molecular and nano-materials and biochemical systems. The book contains peer-reviewed contributions written by leading experts in the fields and based on the presentations given at the Twenty-Fourth International Workshop on Quantum Systems in Chemistry, Physics, and Biology held in Odessa, Ukraine, in August 2019. This book is aimed at advanced graduate students, academics, and researchers, both in university and corporation laboratories, interested in state-of-the-art and novel trends in quantum chemistry, physics, biology, and their applications.
Terahertz (THz) electromagnetic waves, phenomena in the THz range and related technological issues have been explosively investigated during the recent two decades. However, its potential as a disruptive technology to commercial applications has yet to make any impression.The Russia-Japan-USA-Europe Symposium on Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUSE-TeraTech 2016), held at Katahira Campus of Tohoku University, Sendai, Japan on October 31 - November 4, 2016, aims to bring together researchers from Russia, Japan, USA and Europe, who are working on the broad range of related problems in the terahertz devices, technologies and applications, to discuss on state-of-the-art results and future directions and collaborations in the development of THz.This is the fifth in the series of preceding successful symposiums in Terahertz Devices and Technologies. It contains 14 selected extended papers presented at the RJUSE-TeraTech 2016 symposium, addressing the variety of topics, in particular, THz detectors based on double heterojunction bipolar transistors (DHBT) and field effect transistors (FET) utilizing resonant plasma effects, quantum cascade (QCL) and HgCdTe quantum-well heterostructures, and graphene-based THz devices.
Silicon, as a single-crystal semiconductor, has sparked a revolution in the field of electronics and touched nearly every field of science and technology. Though available abundantly as silica and in various other forms in nature, silicon is difficult to separate from its chemical compounds because of its reactivity. As a solid, silicon is chemically inert and stable, but growing it as a single crystal creates many technological challenges. Crystal Growth and Evaluation of Silicon for VLSI and ULSI is one of the first books to cover the systematic growth of silicon single crystals and the complete evaluation of silicon, from sand to useful wafers for device fabrication. Written for engineers and researchers working in semiconductor fabrication industries, this practical text: Describes different techniques used to grow silicon single crystals Explains how grown single-crystal ingots become a complete silicon wafer for integrated-circuit fabrication Reviews different methods to evaluate silicon wafers to determine suitability for device applications Analyzes silicon wafers in terms of resistivity and impurity concentration mapping Examines the effect of intentional and unintentional impurities Explores the defects found in regular silicon-crystal lattice Discusses silicon wafer preparation for VLSI and ULSI processing Crystal Growth and Evaluation of Silicon for VLSI and ULSI is an essential reference for different approaches to the selection of the basic silicon-containing compound, separation of silicon as metallurgical-grade pure silicon, subsequent purification, single-crystal growth, and defects and evaluation of the deviations within the grown crystals.
Low dimensional systems have revolutionized the science and technology in several areas. However, their understanding is still a great challenge for the scientific community. Solar energy conversion devices based on nanostructured materials have shown exceptional gains in efficiency and stability. In this context, nanostructures allow an improvement of surface properties, transport and charge transfer, as well as direct application as sensors and storage devices and energy conversion. This book discuss the recent advances and future trends of the nanoscience in solar energy conversion and storage. It explores and discusses recent developments both in theory as well as in experimental studies and is of interest to materials scientists, chemists, physicists and engineers.
This book presents fabrication approaches that could be adapted for the high-throughput and low-cost manufacturing of the proposed transparent electrode. It proposes and demonstrates a new type of embedded metal-mesh transparent electrode (EMTE) that offers superior electrical, optical, and mechanical properties. The structure of the EMTE allows thick metal mesh to be used (for high conductivity) without sacrificing surface smoothness. In addition, the embedded structure improves the EMTE's mechanical stability under high bending stress, as well as its chemical stability in ambient environments. These design aspects are then shown to be suitable for larger electrode areas, narrower metal-mesh line widths, and a wide range of materials, and can easily be adapted to produce flexible and even stretchable devices. In closing, the book explores the practical applications of EMTEs in flexible bifacial dye-sensitized solar cells and transparent thin-film heaters, demonstrating their outstanding performance.
This book provides an introduction to the cost modeling for electronic systems that is suitable for advanced undergraduate and graduate students in electrical, mechanical and industrial engineering, and professionals involved with electronics technology development and management. This book melds elements of traditional engineering economics with manufacturing process and life-cycle cost management concepts to form a practical foundation for predicting the cost of electronic products and systems. Various manufacturing cost analysis methods are addressed including: process-flow, parametric, cost of ownership, and activity based costing. The effects of learning curves, data uncertainty, test and rework processes, and defects are considered. Aspects of system sustainment and life-cycle cost modeling including reliability (warranty, burn-in), maintenance (sparing and availability), and obsolescence are treated. Finally, total cost of ownership of systems, return on investment, cost-benefit analysis, and real options analysis are addressed.
This book addresses computationally-efficient multi-objective optimization of antenna structures using variable-fidelity electromagnetic simulations, surrogate modeling techniques, and design space reduction methods. Based on contemporary research, it formulates multi-objective design tasks, highlights related challenges in the context of antenna design, and discusses solution approaches. Specific focus is on providing methodologies for handling computationally expensive simulation models of antenna structures in the sense of their multi-objective optimization. Also given is a summary of recent developments in antenna design optimization using variable-fidelity simulation models. Numerous examples of real-world antenna design problems are provided along with discussions and recommendations for the readers interested in applying the considered methods in their design work.Written with researchers and students in mind, topics covered can also be applied across a broad spectrum of aeronautical, mechanical, electrical, biomedical and civil engineering. It is of particular interest to those dealing with optimization, computationally expensive design tasks and simulation-driven design.
Discusses the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section Presents a single approach based on the M. Berry formula Describes the topological competition between different optical vortices in a superposition Demonstrates the stability of the topological charge to random phase distortions and insensitivity to amplitude distortions Contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space and the topological charge is preserved
The MOS 2016 Study Guide for Microsoft Outlook covers Microsoft Outlook 2016, specifically the skills required to pass the Outlook 2016 Microsoft Office Specialist exam. The Microsoft Office Specialist Study Guides provide concise descriptions of the tasks that certification candidates must demonstrate to pass the Microsoft Office Specialist exams, step-by-step procedures for performing those tasks, practice tasks based on the MOS exam approach, sample files for practicing the tasks, and solution files so you can check your work. |
You may like...
Research Anthology on Makerspaces and 3D…
Information R Management Association
Hardcover
R9,697
Discovery Miles 96 970
Facilitating Learning in Language…
Rajest S. Suman, Salvatore Moccia, …
Hardcover
R6,677
Discovery Miles 66 770
Handbook of Qualitative Research…
Joanna Crossman, Sarbari Bordia
Hardcover
R5,157
Discovery Miles 51 570
Invent to Learn - Making, Tinkering, and…
Sylvia Libow Martinez, Gary S Stager
Paperback
R999
Discovery Miles 9 990
Handbook of Research on Stress and…
Ronald J. Burke, Silvia Pignata
Paperback
R1,219
Discovery Miles 12 190
Advanced Educational Technology in…
Anthony Gordon, Michael Hacker, …
Hardcover
R4,150
Discovery Miles 41 500
Analyzing Telework, Trustworthiness, and…
Michael A. Brown Sr.
Hardcover
R5,931
Discovery Miles 59 310
|