![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
This book is the volume of the proceedings for the 17th Edition of ISER. The goal of ISER (International Symposium on Experimental Robotics) symposia is to provide a single-track forum on the current developments and new directions of experimental robotics. The series has traditionally attracted a wide readership of researchers and practitioners interested to the advances and innovations of robotics technology. The 54 contributions cover a wide range of topics in robotics and are organized in 9 chapters: aerial robots, design and prototyping, field robotics, human-robot interaction, machine learning, mapping and localization, multi-robots, perception, planning and control. Experimental validation of algorithms, concepts, or techniques is the common thread running through this large research collection. Chapter "A New Conversion Method to Evaluate the Hazard Potential of Collaborative Robots in Free Collisions" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book addresses the development of electronic devices using redox-active organic molecules and their porous coordination networks (PCNs), and highlights the importance of the molecular arrangement. Redox-active organic molecules hold considerable promise as flexible electronic elements, because their electronic state can easily be controlled using external energy. Although various kinds of redox-active organic molecules have been synthesized, attempts to apply them to electronic devices have been limited, owing to the lack of proper structural design. Moreover, ligand-based redox-active PCNs remain largely unexplored because of the limited availability of redox-active ligands. In addition to developing new redox-active organic molecules, in order to design electronic devices based on these molecules/PCNs, it is essential to understand the connections between their molecular arrangement, electrical properties, and redox activity. In this thesis, the redox-active organic molecule 2,5,8-tri(4-pyridyl)1,3-diazaphenalene (TPDAP), which features a large pi plane and multi-intermolecular interactivity, is used to develop a resistive switching memory device. In addition, its PCNs are synthesized to fabricate chemiresistive sensors, and the electrical properties are modulated using post-synthetic modification. Each mechanism is systematically investigated by means of structural determination and well-defined control experiments. Subsequently, the book proposes general guidelines for designing electronic devices using redox-active organic molecules. The book will appeal to a broad range of readers, from basic scientists to materials engineers, as well as general, non-expert readers.
In this book, the authors cover the recent progress in the synthesis, characterization and application of various multi-layered carbides, carbonitrides and nitrides. Moreover, the processing and development of MXene-based composites are elaborated, focusing on their applications and performances as transparent conductors in environmental remediation and energy storage systems.
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the sixth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Health Monitoring, including papers on: Novel Techniques Optical Methods, Scanning LDV Methods Photogrammetry & DIC Rotating Machinery
This thesis presents the first ever measurement of the noise emitted by magnetic monopoles and the development of an exquisitely sensitive magnetic-field-noise spectrometer based on a superconducting quantum interference device (SQUID) that enabled it. Magnetic monopoles are highly elusive elementary particles exhibiting quantized magnetic charge. The prospects for studying them brightened recently with the theoretical discovery that the thermally excited states in certain classes of magnetic insulators exhibit all the characteristics of magnetic monopoles. Furthermore, in 2018, it was predicted that the random motion of magnetic monopoles inside would generate a very specific kind of magnetization noise. In this thesis, the author describes a new experimental technique, so-called spin noise spectroscopy, and the subsequent discovery of virtually all of the predicted features of the magnetic noise expected from a dense fluid of magnetic monopoles in crystals of Dy2Ti2O7. Remarkably, because this magnetic monopole noise occurs in the frequency range below 20kHz, when amplified by the SQUID it is actually audible to humans.
The book provides an introduction to nanostructured materials and guides the reader through their different engineering applications. It gives an overview of nanostructured materials applied in the fields of physics, chemistry, biology, medicine, and materials science. Materials for different applications in engineering such as those used in opto-electronics, energy, tribology, bio-applications, catalysis, reinforcement and many more have been described in this book. The book will be of interest to researchers and students who want to learn about applications of nanostructured materials in engineering.
Critical infrastructures are targets for terrorism and deliver a valuable vector through which the proliferation of CBRN and explosive precursors can be detected. Recent technological breakthroughs, notably in the field of near infrared (NIR), mid infrared (MIR), Terahertz (THz) and Gigahertz (GHz) sources and detectors, have led to rugged commercial devices, capable of standoff sensing a range of these dangerous substances. However, at the same time criminal and terrorist organizations have also benefited from the availability of technologies to increase the threat they pose to the security of citizens and a concerted effort is needed to improve early detection measures to identify activities, such as the production of homemade explosives or CBRN that can be potentially dangerous to society. The key global technological bottleneck to be overcome is the current lack of integration and networking of mature detection technology into early warning systems for critical infrastructures. Thus, this book brings together complementary information connecting the research of leading teams working on critical Infrastructure protection with academic developers and industrial producers of state of the art sensors.
This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author. The emphasis is on high-energy-density physics (HEDP) and inertial confinement fusion (ICF), with a comprehensive description of the propagation, absorption, nonlinear effects and parametric instabilities of high energy lasers in plasmas. The recent demonstration of a burning plasma on the verge of nuclear fusion ignition at the National Ignition Facility in Livermore, California, has marked the beginning of a new era of ICF and fusion research. These new developments make LPI more relevant than ever, and the resulting influx of new scientists necessitates new pedagogical material on the subject. In contrast to the classical textbooks on LPI, this book provides a complete description of all wave-coupling instabilities in unmagnetized plasmas in the kinetic as well as fluid pictures, and includes a comprehensive description of the optical smoothing techniques used on high-power lasers and their impact on laser-plasma instabilities. It summarizes all the key developments from the 1970s to the present day in view of the current state of LPI and ICF research; it provides a derivation of the key LPI metrics and formulas from first principles, and connects the theory to experimental observables. With exercises and plenty of illustrations, this book is ideal as a textbook for a course on laser-plasma interactions or as a supplementary text for graduate introductory plasma physics course. Students and researchers will also find it to be an invaluable reference and self-study resource.
From everyday applications to the rise of automation, devices have become ubiquitous. Specific materials are employed in specific devices because of their particular properties, including electrical, thermal, magnetic, mechanical, ferroelectric, and piezoelectric. Materials for Devices discusses materials selection for optimal application and highlights current materials developments in gas sensors, optical devices, mechanoelectrical devices, and medical and biological devices. Explains how to select the right material for the right device Includes 2D materials, thin films, smart piezoelectric films, and more Presents details on organic solar cells Describes thin films in sensors, actuators, and LEDs Covers thin films and elastic polymers in biomedical devices Discusses growth and characterization of intrinsic magnetic topological insulators This work is aimed at researchers, technologists, and advanced students in materials and electrical engineering and related fields who are interested in developing sensors or devices.
This new volume "Iridium Catalysts for Organic Reactions" in the series "Topics in Organometallic Chemistry" intends to update several representative well-known reactions and to introduce other less known or new reactions in particular covering sustainability aspects. Iridium complexes are efficient in many catalytic homogeneous transformations providing high efficiency in both results, activity and selectivity. The interest of the book lies in the presentation of the advances, new perspectives and application in a variety of representative iridium-catalysed reaction. All chapters in the volume are contributed by relevant international experts in the field. The book is aimed at researchers, graduate students and synthetic chemists at all levels in academia and industry.
This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.
The book highlights recent developments in the field of biomedical systems covering a wide range of technological aspects, methods, systems and instrumentation techniques for diagnosis, monitoring, treatment, and assistance. Biomedical systems are becoming increasingly important in medicine and in special areas of application such as supporting people with disabilities and under pandemic conditions. They provide a solid basis for supporting people and improving their health care. As such, the book offers a key reference guide about novel medical systems for students, engineers, designers, and technicians.
This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.
This book is the fifth volume in the successful book series Robot Operating System: The Complete Reference. The objective of the book is to provide the reader with comprehensive coverage on the Robot Operating System (ROS), which is currently considered to be the primary development framework for robotics applications, and the latest trends and contributing systems. The content is divided into six parts. Pat I presents for the first time the emerging ROS 2.0 framework, while Part II focuses on multi-robot systems, namely on SLAM and Swarm coordination. Part III provides two chapters on autonomous systems, namely self-driving cars and unmanned aerial systems. In turn, Part IV addresses the contributions of simulation frameworks for ROS. In Part V, two chapters explore robotic manipulators and legged robots. Finally, Part VI presents emerging topics in monocular SLAM and a chapter on fault tolerance systems for ROS. Given its scope, the book will offer a valuable companion for ROS users and developers, helping them deepen their knowledge of ROS capabilities and features.
This book discusses the spectral properties of solid-state laser materials, including emission and absorption of light, the law of radiative and nonradiative transitions, the selection rule for optical transitions, and different calculation methods of the spectral parameters. The book includes a systematic presentation of the authors' own research works in this field, specifically addressing the stimulated nonradiative transition theory and the apparent crystal field model. This volume is helpful resource for researchers and graduate students in the fields of solid spectroscopy and solid-state laser material physics, while also serving as a valuable reference guide for instructors and advanced students of physics.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
This book presents peer-reviewed articles from the 20th International Symposium on Optomechatronic Technologies (ISOT 2019), held in Goa, India. The symposium brought together students, researchers, professionals, and academicians in the field of optomechatronics and related areas on a common platform conducive to academic interaction with business professionals.
This book is devoted to the theoretical and experimental investigation of the optoelectronic oscillator (OEO) with direct and external modulation of laser emission. Such devices, sources of precision radio frequency oscillations using laser excitation, are novel and technologically relevant, with manifold possible applications. The book includes a review of the present state of the theory and generation techniques in microwave and mm-wave ranges for traditional and optoelectronic oscillators, description of OEO construction and operation principles, theoretical oscillation analysis and mathematical description of the relevant semi-classical laser physics, and investigation of the power spectral density of noises. Technical features and advantages of OEOs with external and direct modulation of laser emission are discussed together with functional diagrams. The characteristics of OEOs are compared with other traditional RF oscillators, such as quartz, surface acoustic waves, and oscillators with electromagnetic wave cavities. Special attention is paid to Q-factors and phase noises of RF carriers at small offsets. The authors discuss the technical characteristics of modern optoelectronic methods for precision RF oscillation formation, such as commercial large-dimension and compact quantum frequency standards with optical pumping on cesium and rubidium cells. This book is aimed at scientists and engineers in academia and industry who work with sources of microwave and mm-wave signals.
Graphene-electrolyte systems are commonly found in cutting-edge research on electrochemistry, biotechnology, nanoelectronics, energy storage, materials engineering, and chemical engineering. The electrons in graphene intimately interact with ions from an electrolyte at the graphene-electrolyte interface, where the electrical or chemical properties of both graphene and electrolyte could be affected. The electronic behavior therefore determines the performance of applications in both Faradaic and non-Faradaic processes, which require intensive studies. This book systematically integrates the electronic theory and experimental techniques for both graphene and electrolytes. The theoretical sections detail the classical and quantum description of electron transport in graphene and the modern models for charges in electrolytes. The experimental sections compile common techniques for graphene growth/characterization and electrochemistry. Based on this knowledge, the final chapter reviews a few applications of graphene-electrolyte systems in biosensing, neural recording, and enhanced electronic devices, in order to inspire future developments. This multidisciplinary book is ideal for a wide audience, including physicists, chemists, biologists, electrical engineers, materials engineers, and chemical engineers.
This book focuses on the calculus of variations, including fundamental theories and applications. This textbook is intended for graduate and higher-level college and university students, introducing them to the basic concepts and calculation methods used in the calculus of variations. It covers the preliminaries, variational problems with fixed boundaries, sufficient conditions of extrema of functionals, problems with undetermined boundaries, variational problems of conditional extrema, variational problems in parametric forms, variational principles, direct methods for variational problems, variational principles in mechanics and their applications, and variational problems of functionals with vector, tensor and Hamiltonian operators. Many of the contributions are based on the authors' research, addressing topics such as the extension of the connotation of the Hilbert adjoint operator, definitions of the other three kinds of adjoint operators, the extremum function theorem of the complete functional, unified Euler equations in variational methods, variational theories of functionals with vectors, modulus of vectors, arbitrary order tensors, Hamiltonian operators and Hamiltonian operator strings, reconciling the Euler equations and the natural boundary conditions, and the application range of variational methods. The book is also a valuable reference resource for teachers as well as science and technology professionals.
This book compiles the accomplishments of the recent research project on photochemistry "Photosynergetics", supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, aiming to develop and elucidate new methods and molecules leading to advanced utilization of photo-energies. Topics include photochemical responses induced by multiple excitation, multiphoton absorption, strong modulation of electronic states, developments of new photofunctional molecules, mesoscopic actuations induced by photoexcitation, and novel photoresponses in molecules and molecular assemblies. The authors stress that these approaches based on the synergetic interaction among many photons and many molecules enable the expansion of the accessibility to specific electronic states. As well, they explain how the development of reaction sequences and molecules/molecular assemblies ensure "additivity" and "integration" without loss of the photon energy, leading to new photoresponsive assemblies in meso- and macroscopic scales.
The second edition of this introductory book sets out clearly and concisely the principles of operation of the semiconductor devices that lie at the heart of the microelectronic revolution. The book aims to teach the reader how semiconductor devices are modelled. It begins by providing a firm background in the relevant semiconductor physics. These ideas are then used to construct both circuit models and mathematical models for diodes, bipolar transistors and MOSFETs. It also describes the processes involved in fabricating silicon chips containing these devices. The first edition has already proved a highly useful textbook to first and second year degree students in electrical and electronic engineering, and related disciplines. It is also useful to HND students in similar subject areas, and as supplementary reading for anyone involved in integrated circuit design and fabrication.
Since the 1980s, scientists have been researching adaptive structures for materials, for multifunctional elements or even for complete systems. Adaptronics (smart materials, smart structures, smart systems) is a field of distinct interdisciplinarity. The book therefore offers an interdisciplinary view of adaptronic systems, materials and functional elements and their applications. The subject matter integrates various engineering disciplines, from electrical engineering and information technology to manufacturing and control engineering, materials engineering and structural mechanics - to name but a few of the relevant subject areas. Starting from the basic principles and variants of adaptronic systems and functional materials, the textbook explains the different construction methods of functional elements. Building on this, readers learn how to apply this knowledge to active shape control, active vibration control and active vibroacoustics. For each of these topics the author presents current examples from research, discusses research results and future research questions. Each of the nine chapters closes with references to further literature. An index of the mathematical symbols used and a keyword index facilitate learning for readers.The book is aimed at Master's students in engineering courses such as mechanical engineering, aerospace engineering, mechatronics, automotive engineering and related courses. The book provides a comprehensive overview for industrial practitioners who want to familiarize themselves with the field of adaptronics and also serves as a reliable reference book.
This book offers essential information on China's human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.
This book highlights the properties of advanced materials suitable for realizing THz devices, circuits and systems, and processing and fabrication technologies associated with those. It also discusses some measurement techniques exclusively effective for THz regime, newly explored materials and recently developed solid-state devices for efficient generation and detection of THz waves, potentiality of metamaterials for implementing THz passive circuits and bio-sensors, and finally the future of silicon as the base material of THz devices. The book especially focuses on the recent advancements and several research issues related to THz materials and devices; it also discusses theoretical, experimental, established, and validated empirical works on these topics. |
![]() ![]() You may like...
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,374
Discovery Miles 53 740
Fundamentals of Sensor Technology…
Ahmed Barhoum, Zeynep Altintas
Paperback
R7,223
Discovery Miles 72 230
Functionalization of 2D Materials and…
Waleed A. El-Said, Nabil Ahmed Abdel Ghany
Paperback
R4,967
Discovery Miles 49 670
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Quadrupoles in Electron Lens Design…
Martin Hytch, Peter W. Hawkes
Hardcover
Plasmonic Materials and Metastructures…
Shangjr Gwo, Andrea Alù, …
Paperback
R5,250
Discovery Miles 52 500
|