![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
Systems-Level Modelling of Microbial Communities: Theory and Practice introduces various aspects of modelling microbial communities and presents a detailed overview of the computational methods which have been developed in this area. This book is aimed at researchers in the field of computational/systems biology as well as biologists/experimentalists studying microbial communities, who are keen on embracing the concepts of computational modelling. The primary focus of this book is on methods for modelling interactions between micro-organisms in a community, with special emphasis on constraint-based and network-based modelling techniques. A brief overview of population- and agent-based modelling is also presented. Lastly, it covers the experimental methods to understand microbial communities, and provides an outlook on how the field may evolve in the coming years.
Physical and behavioral biometric technologies such as fingerprinting, facial recognition, voice identification, etc. have enhanced the level of security substantially in recent years. Governments and corporates have employed these technologies to achieve better customer satisfaction. However, biometrics faces major challenges in reducing criminal, terrorist activities and electronic frauds, especially in choosing appropriate decision-making algorithms. To face this challenge, new developments have been made, that amalgamate biometrics with artificial intelligence (AI) in decision-making modeling. Advanced software algorithms of AI, processing information offered by biometric technology, achieve better results. This has led to growth in the biometrics technology industry, and is set to increase the security and internal control operations manifold. This book provides an overview of the existing biometric technologies, decision-making algorithms and the growth opportunity in biometrics. The book proposes a throughput model, which draws on computer science, economics and psychology to model perceptual, informational sources, judgmental processes and decision choice algorithms. It reviews how biometrics might be applied to reduce risks to individuals and organizations, especially when dealing with digital-based media.
1 uniquely integrates essentials from vehicle dynamics and control theory for controller design with NI LabVIEW at the level of practical applications 2 Provides new features in the modelling of drivetrain configuration, regenerative braking, rollover dynamics for model-based control 3 Shares advanced controller designs that have yet to be published 4 Provides mathematical models of vehicle behavior of vehicles that move dynamically in the presence of disturbances to the motion 5 Demonstrates what a control design engineer can do to practically achieve the desired vehicle behavior based on mathematical models
Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB (R), Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.
Addresses the complete functional framework workflow in IoT technology Explores basic and high level concepts Provides data based intelligent and automated systems through Industrial IoT and its implications to the real world Discusses the major applications Presents an interdisciplinary platform
Project risk management is regarded as a necessary dimension of effective project delivery. Current practices tend to focus on tangible issues such as late delivery of equipment or the implications of technology. This book introduces a framework to identify emergent behavior-centric intangible risks and the conditions that initiate them. Decision Making in Risk Management: Quantifying Intangible Risk Factors in Projects identifies the quantitative measures to assess behavior-induced risks by presenting a framework that limits the interpersonal tension of addressing behavioral risks. Included in the book is an illustrative case study from the oil and gas sector that demonstrates the use of the framework. The missing dimension of behavior-centric intangible risk factors in current risk identification is explored. The book goes on to cover management processes, providing a systematic analytical approach to mitigate subjectivity when addressing behavioral risks in projects. This book is useful to those working in the fields of Project Management, Systems Engineering, Risk Management, and Behavioral Science.
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
is the first book to set out a range of machine learning methods for efficient resource management in a large distributed network of clouds. predictive analytics is an integral part of efficient cloud resource management, and this book gives a future research direction to researchers in this domain. it is written by leading international researchers.
Machine Translation (MT) has become widely used throughout the world as a medium of communication between those who live in different countries and speak different languages. However, translation between distant languages constitutes a challenge for machines. Therefore, translation evaluation is poised to play a significant role in the process of designing and developing effective MT systems. This book evaluates three prominent MT systems, including Google Translate, Microsoft Translator, and Sakhr, each of which provides translation between English and Arabic. In the book Almahasees scrutinizes the capacity of the three systems in dealing with translation between English and Arabic in a large corpus taken from various domains, including the United Nation (UN), the World Health Organization (WHO), the Arab League, Petra News Agency reports, and two literary texts: The Old Man and the Sea and The Prophet. The evaluation covers holistic analysis to assess the output of the three systems in terms of Translation Automation User Society (TAUS) adequacy and fluency scales. The text also looks at error analysis to evaluate the systems' output in terms of orthography, lexis, grammar, and semantics at the entire-text level and in terms of lexis, grammar, and semantics at the collocation level. The research findings contained within this volume provide important feedback about the capabilities of the three MT systems with respect to English<>Arabic translation and paves the way for further research on such an important topic. This book will be of interest to scholars and students of translation studies and translation technology.
The fusion of AI and IoT enables the systems to be predictive, prescriptive, and autonomous, and this convergence has evolved the nature of emerging applications from being assisted to augmented, and ultimately to autonomous intelligence. This book discusses algorithmic applications in the field of machine learning and IoT with pertinent applications. It further discusses challenges and future directions in the machine learning area and develops understanding of its role in technology, in terms of IoT security issues. Pertinent applications described include speech recognition, medical diagnosis, optimizations, predictions, and security aspects. Features: Focuses on algorithmic and practical parts of the artificial intelligence approaches in IoT applications. Discusses supervised and unsupervised machine learning for IoT data and devices. Presents an overview of the different algorithms related to Machine learning and IoT. Covers practical case studies on industrial and smart home automation. Includes implementation of AI from case studies in personal and industrial IoT. This book aims at Researchers and Graduate students in Computer Engineering, Networking Communications, Information Science Engineering, and Electrical Engineering.
In the last decade, both scholars and practitioners have sought novel ways to address the problem of cybersecurity. Innovative outcomes have included applications such as blockchain as well as creative methods for cyber forensics, software development, and intrusion prevention. Accompanying these technological advancements, discussion on cyber matters at national and international levels has focused primarily on the topics of law, policy, and strategy. The objective of these efforts is typically to promote security by establishing agreements among stakeholders on regulatory activities. Varying levels of investment in cyberspace, however, comes with varying levels of risk; in some ways, this can translate directly to the degree of emphasis for pushing substantial change. At the very foundation or root of cyberspace systems and processes are tenets and rules governed by principles in mathematics. Topics such as encrypting or decrypting file transmissions, modeling networks, performing data analysis, quantifying uncertainty, measuring risk, and weighing decisions or adversarial courses of action represent a very small subset of activities highlighted by mathematics. To facilitate education and a greater awareness of the role of mathematics in cyber systems and processes, a description of research in this area is needed. Mathematics in Cyber Research aims to familiarize educators and young researchers with the breadth of mathematics in cyber-related research. Each chapter introduces a mathematical sub-field, describes relevant work in this field associated with the cyber domain, provides methods and tools, as well as details cyber research examples or case studies. Features One of the only books to bring together such a diverse and comprehensive range of topics within mathematics and apply them to cyber research. Suitable for college undergraduate students or educators that are either interested in learning about cyber-related mathematics or intend to perform research within the cyber domain. The book may also appeal to practitioners within the commercial or government industry sectors. Most national and international venues for collaboration and discussion on cyber matters have focused primarily on the topics of law, policy, strategy, and technology. This book is among the first to address the underpinning mathematics.
Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.
This book focuses on the design of efficient & dynamic methods to allocate divisible resources under various auction mechanisms, discussing their applications in power & microgrid systems and the V2G & EV charging coordination problems in smart grids. It describes the design of dynamic methods for single-sided and double-sided auction games and presents a number of simulation cases verifying the performances of the proposed algorithms in terms of efficiency, convergence and computational complexity. Further, it explores the performances of certain auction mechanisms in a hierarchical structure and with large-scale agents, as well as the auction mechanisms for the efficient allocation of multi-type resources. Lastly, it generalizes the main and demonstrates their application in smart grids. This book is a valuable resource for researchers, engineers, and graduate students in the fields of optimization, game theory, auction mechanisms and smart grids interested in designing dynamic auction mechanisms to implement optimal allocation of divisible resources, especially electricity and other types of energy in smart grids.
provides a detailed background to start working and doing research on mean-field-type control and game theory includes several numerical examples using a MatLab-based user-friendly toolbox provides analyzsis of mean-field-type control and game problems incorporating several stochastic processes, e.g., Brownian motions, Poisson jumps, and random coefficients includes several engineering applications in both continuous and discrete time, such as micro-grid energy storage, stirred tank reactor, mechanism design for evolutionary dynamics, multi-level building evacuation problem, and the COVID-19 propagation control
Handbook of Green Engineering Technologies for Sustainable Smart Cities focuses on the complete exploration and presentation of green smart city applications, techniques, and architectural frameworks. It provides detailed coverage of urban sustainability spanning across various engineering disciplines. The book discusses and explores green engineering technologies for smart cities and covers various engineering disciplines and environmental science. It emphasizes techniques, application frameworks, tools, and case studies. All chapters play a part in the evolution of sustainable green smart cities and present how to solve environmental issues by applying modern industrial IoT solutions. This book will benefit researchers, smart city practitioners, academicians, university students, and policy makers.
Far from being separate entities, many social and engineering systems can be considered as complex network systems (CNSs) associated with closely linked interactions with neighbouring entities such as the Internet and power grids. Roughly speaking, a CNS refers to a networking system consisting of lots of interactional individuals, exhibiting fascinating collective behaviour that cannot always be anticipated from the inherent properties of the individuals themselves. As one of the most fundamental examples of cooperative behaviour, consensus within CNSs (or the synchronization of complex networks) has gained considerable attention from various fields of research, including systems science, control theory and electrical engineering. This book mainly studies consensus of CNSs with dynamics topologies - unlike most existing books that have focused on consensus control and analysis for CNSs under a fixed topology. As most practical networks have limited communication ability, switching graphs can be used to characterize real-world communication topologies, leading to a wider range of practical applications. This book provides some novel multiple Lyapunov functions (MLFs), good candidates for analysing the consensus of CNSs with directed switching topologies, while each chapter provides detailed theoretical analyses according to the stability theory of switched systems. Moreover, numerical simulations are provided to validate the theoretical results. Both professional researchers and laypeople will benefit from this book.
Provides insights from experienced academicians on the digitalization of education Discusses how to enhance the quality of education in higher education institutes Covers how to transform the traditional education to digital education Presents the latest tools being used to conduct contactless classes, assessment, tracking performance, providing feedback, and carrying out assignments and projects. Offers the ability to be able to learn the latest on virtual classrooms and laboratories.
Machine learning approaches has the capability to learn and adapt to the constantly evolving demands of large Internet-of-energy (IoE) network. The focus of this book is on using the machine learning approaches to present various solutions for IoE network in smart cities to solve various research gaps such as demand response management, resource management and effective utilization of the underlying ICT network. It provides in-depth knowledge to build the technical understanding for the reader to pursue various research problems in this field. Moreover, the example problems in smart cities and their solutions using machine learning are provided as relatable to the real-life scenarios. Aimed at Graduate Students, Researchers in Computer Science, Electrical Engineering, Telecommunication Engineering, Internet of Things, Machine Learning, Green computing, Smart Grid, this book: Covers all aspects of Internet of Energy (IoE) and smart cities including research problems and solutions. Points to the solutions provided by machine learning to optimize the grids within a smart city set-up. Discusses relevant IoE design principles and architecture. Helps to automate various services in smart cities for energy management. Includes case studies to show the effectiveness of the discussed schemes.
How do preprocessing steps such as tokenization, stemming, and removing stop words affect predictive models? Build beginning-to-end workflows for predictive modeling using text as features Compare traditional machine learning methods and deep learning methods for text data
Recent advances in wireless technology have led to the emergence of industry standards such as WirelessHART. These strategies minimise the need for cumbersome cabling, thereby reducing costs. However, applying them involves the challenge of handling stochastic network delays, which can degrade control performance. To address this problem, commonly used simple PID could be employed. However, PID suffers from gain range limitations when used in a delayed environment. Furthermore, model-based controllers are complex and require exact models of the process and systematic system identification for implementation. Therefore, to address these issues, the book proposes control strategies that retain the simplicity of PID in terms of ease of tuning and structure, while improving on the performance of the closed-loop system with regard to stochastic network delays and mismatches. Concretely, it proposes and discusses three strategies, namely: Setpoint Weighting (SW), Filtered Predictive PI (FPPI) and Optimal Fuzzy PID. In order to optimise some of these controllers, two novel hybrid optimisation algorithms combining the dynamism of the Bacterial Foraging Algorithm (BFA) and advantages of both the Spiral Dynamic Algorithm (SDA) and the Accelerated Particle Swarm Optimisation (APSO) have been used. The strategies proposed here can also be applied in stochastic control scenarios (not necessarily wireless) characterised by uncertainties. This book will be useful to engineers and researchers in both industry and academia. In industry, it will be particularly useful to research and development efforts where PID controllers and wireless sensor networks (WSNs) involving both short and long term stochastic network delay are employed. Thus, it can be used for real-time control design in these areas. In the academic setting, the book will be useful for researchers, undergraduate and graduate students of instrumentation and control. It can also be used as reference material for teaching courses on predictive and adaptive controls and their application.
The texts presented in Proportion Harmonies and Identities (PHI) Tradition and Innovation were compiled with the intent to establish a multidisciplinary platform for the presentation, interaction, and dissemination of researches. They also aim to foster the awareness and discussion on the topic of Tradition and Innovation, focusing on different visions relevant to Architecture, Arts and Humanities, Design and Social Sciences, and its importance and benefits for the sense of identity, both individual and communal. The idea of Tradition and Innovation has been a significant motor for development since the Western Early Modern Age. Its theoretical and practical foundations have become the working tools of scientists, philosophers, and artists, who seek strategies and policies to accelerate the development process in different contexts.
Artificial Intelligence: Technologies, Applications, and Challenges is an invaluable resource for readers to explore the utilization of Artificial Intelligence, applications, challenges, and its underlying technologies in different applications areas. Using a series of present and future applications, such as indoor-outdoor securities, graphic signal processing, robotic surgery, image processing, character recognition, augmented reality, object detection and tracking, intelligent traffic monitoring, emergency department medical imaging, and many more, this publication will support readers to get deeper knowledge and implementing the tools of Artificial Intelligence. The book offers comprehensive coverage of the most essential topics, including: Rise of the machines and communications to IoT (3G, 5G). Tools and Technologies of Artificial Intelligence Real-time applications of artificial intelligence using machine learning and deep learning. Challenging Issues and Novel Solutions for realistic applications Mining and tracking of motion based object data image processing and analysis into the unified framework to understand both IoT and Artificial Intelligence-based applications. This book will be an ideal resource for IT professionals, researchers, under or post-graduate students, practitioners, and technology developers who are interested in gaining insight to the Artificial Intelligence with deep learning, IoT and machine learning, critical applications domains, technologies, and solutions to handle relevant challenges.
Focuses on new machine learning developments that can lead to newly developed applications Uses a predictive and futuristic approach which makes Machine Learning a promising tool for business processes and sustainable solutions Promotes newer algorithms which are more efficient and reliable for a new dimension in discovering certain latent domains of applications Discusses the huge potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making Offers many real-time case studies
Includes specific pedagogy used in engineering teaching Offers case studies and classroom practices used by engineering institutions Discusses innovative strategies used in lockdown days during COVID-19 pandemic Presents guidelines and comparisons on various national and international accreditation bodies Explores cost effective technologies and open source tools specifically used for low income educational institutions |
You may like...
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala
Paperback
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Becoming Human with Humanoid - From…
Ahmad Hoirul Basori, Ali Leylavi Shoushtari, …
Hardcover
R3,068
Discovery Miles 30 680
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
|