![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science. Key Features * Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science. * Presents predictive outcomes by applying data science techniques to real-life applications. * Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. * Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful.
In this book, the authors write about creativity in teaching and how to enhance creativity in learners. They highlight the new reality of teaching and learning in the digital era, specifically the impact of artificial intelligence, data economy, and artificial minds on modern teaching practices, curriculum design, and the role of teachers in classrooms. Creativity in Teaching and Teaching for Creativity: Modern Practices in the Digital Era approaches human intelligence as a universal gift. It emphasizes that the creativity of human beings is not only a natural quality, but one that can be enhanced as a result of learning. The book suggests new teaching models and approaches and discusses how the role of teachers in the classroom has fundamentally changed, emphasizing the emotional connection between students and teachers. The book will find interest among higher education policymakers who believe in the transformation of the education industry, research scholars who are pursuing their Ph.D. in the fields of education technology and education and learning, as well as those working in the area of education technology and artificial intelligence.
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
"Proceedings of the FISITA 2012 World Automotive Congress" are
selected from nearly 2,000 papers submitted to the 34th FISITA
World Automotive Congress, which is held by Society of Automotive
Engineers of China (SAE-China) and the International Federation of
Automotive Engineering Societies (FISITA). This proceedings focus
on solutions for sustainable mobility in all areas of passenger
car, truck and bus transportation. Volume 10: Chassis Systems and
Integration Technology focuses on:
Discover all the amazing things you can do with Arduino Arduino is a programmable circuit board that is being used by everyone from scientists, programmers, and hardware hackers to artists, designers, hobbyists, and engineers in order to add interactivity to objects and projects and experiment with programming and electronics. This easy-to-understand book is an ideal place to start if you are interested in learning more about Arduino's vast capabilities. Featuring an array of cool projects, this Arduino beginner guide walks you through every step of each of the featured projects so that you can acquire a clear understanding of the different aspects of the Arduino board.Introduces Arduino basics to provide you with a solid foundation of understanding before you tackle your first projectFeatures a variety of fun projects that show you how to do everything from automating your garden's watering system to constructing a keypad entry system, installing a tweeting cat flap, building a robot car, and much moreProvides an easy, hands-on approach to learning more about electronics, programming, and interaction design for Makers of all ages "Arduino Projects For Dummies" is your guide to turning everyday electronics and plain old projects into incredible innovations.Get Connected To find out more about Brock Craft and his recent Arduino creations, visit www.facebook.com/ArduinoProjectsForDummies
This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable or by exploiting areas of partial stability within all the unstable modes. The book can be used as a reference for academic research on switched systems or used by graduate students of control theory and engineering. Readers should have studied linear and nonlinear system theory and have some knowledge of switched and hybrid systems to get the most from this monograph.
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
This book addresses a broad range of topics concerning machine learning, big data, the Internet of things (IoT), and security in the IoT. Its goal is to bring together several innovative studies on these areas, in order to help researchers, engineers, and designers in several interdisciplinary domains pursue related applications. It presents an overview of the various algorithms used, focusing on the advantages and disadvantages of each in the fields of machine learning and big data. It also covers next-generation computing paradigms that are expected to support wireless networking with high data transfer rates and autonomous decision-making capabilities. In turn, the book discusses IoT applications (e.g. healthcare applications) that generate a huge amount of sensor data and imaging data that must be handled correctly for further processing. In the traditional IoT ecosystem, cloud computing offers a solution for the efficient management of huge amounts of data, thanks to its ability to access shared resources and provide a common infrastructure in a ubiquitous manner. Though these new technologies are invaluable, they also reveal serious IoT security challenges. IoT applications are vulnerable to various types of attack such as eavesdropping, spoofing and false data injection, the man-in-the-middle attack, replay attack, denial-of-service attack, jamming attack, flooding attack, etc. These and other security issues in the Internet of things are explored in detail. In addition to highlighting outstanding research and recent advances from around the globe, the book reports on current challenges and future directions in the IoT. Accordingly, it offers engineers, professionals, researchers, and designers an applied-oriented resource to support them in a broad range of interdisciplinary areas.
This book aims at providing an overview of state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. It covers topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations. It reports on applications such as fuzzy real time scheduling, intelligent control, diagnostics and time series prediction. Chapters were carefully selected among contributions presented at the second edition of the International Conference on Intuitionistic Fuzzy Sets and Mathematical Science, ICIFSMAS, held on April 11-13, 2018, at Al Akhawayn University of Ifrane, in Morocco.
This proceedings volume highlights a selection of papers presented at the 7th International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam, during March 19-23, 2018. The conference has been organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology, the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered include numerical simulation, methods for optimization and control, machine learning, parallel computing and software development, as well as the applications of scientific computing in mechanical engineering, airspace engineering, environmental physics, decision making, hydrogeology, material science and electric circuits.
Describes how cognitive IoT is helpful for chronic disease prediction and processing of data gathered from health care devices Explains different sensors available for health monitoring Explores application of Cognitive IoT in Covid-19 analysis Discusses pertinent efficient farming applications for sustaining agricultural growth Review smart education aspects like student response, performance, and behaviour, Instructor response, performance, and behaviour
1) Provides a levelling approach, bringing students at all stages of programming experience to the same point 2) Focuses Python, a general language, to an engineering and scientific context 3) Uses a classroom tested, practical approach to teaching programming 4) Teaches students and professionals how to use Python to solve engineering calculations such as differential and algebraic equations
This book constitutes the proceedings of the 18th Chinese Intelligent Systems Conference, CISC 2022, which was held during October 15-16, 2022, in Beijing, China. The 178 papers in these proceedings were carefully reviewed and selected from 185 submissions. The papers deal with various topics in the field of intelligent systems and control, such as multi-agent systems, complex networks, intelligent robots, complex system theory and swarm behavior, event-triggered control and data-driven control, robust and adaptive control, big data and brain science, process control, intelligent sensor and detection technology, deep learning and learning control guidance, navigation and control of aerial vehicles.
The proceeding is a collection of research papers presented at the 11th International Conference on Robotics, Vision, Signal Processing & Power Applications (RoViSP 2021). The theme of RoViSP 2021 "Enhancing Research and Innovation through the Fourth Industrial Revolution (IR 4.0)" served as a platform for researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe to present and exchange their research findings and development activities through oral presentations. The book covers various topics of interest, including: Robotics, Control, Mechatronics and Automation Telecommunication Systems and Applications Electronic Design and Applications Vision, Image and Signal Processing Electrical Power, Energy and Industrial Applications Computer and Information Technology Biomedical Engineering and Applications Intelligent Systems Internet-of-things Mechatronics Mobile Technology
Systematically defines energy-efficient buildings, employing power consumption optimization techniques with inclusion of renewable energy sources. Covers data centre and cyber security with excellent data storage features for smart buildings. Includes systematic and detailed strategies for building air conditioning and lighting. Details smart building security propulsion.
Discusses various aspects of role of Internet of Things (IoT) and Machine Learning in smart buildings. Explains pertinent system architecture focusing on power generation and distribution. Covers power enabling technologies for smart cities. Includes Photovoltaic System Integrated Smart Buildings.
A comprehensive reference book for detailed explanations for every algorithm and techniques related to the transformers. 60+ transformer architectures covered in a comprehensive manner. A book for understanding how to apply the transformer techniques in speech, text, time series, and computer vision. Practical tips and tricks for each architecture and how to use it in the real world. Hands-on case studies and code snippets for theory and practical real-world analysis using the tools and libraries, all ready to run in Google Colab.
Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book. A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there's an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree). Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance.
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML
This book systematically introduces readers to the core algorithms of battery management system (BMS) for electric vehicles. These algorithms cover most of the technical bottlenecks encountered in BMS applications, including battery system modeling, state of charge (SOC) and state of health (SOH) estimation, state of power (SOP) estimation, remaining useful life (RUL) prediction, heating at low temperature, and optimization of charging. The book not only presents these algorithms, but also discusses their background, as well as related experimental and hardware developments. The concise figures and program codes provided make the calculation process easy to follow and apply, while the results obtained are presented in a comparative way, allowing readers to intuitively grasp the characteristics of different algorithms. Given its scope, the book is intended for researchers, senior undergraduate and graduate students, as well as engineers in the fields of electric vehicles and energy storage.
This book aims to develop professional and practical microcontroller applications in the ARM-MDK environment with Texas Instruments MSP432P401R LaunchPad kits. It introduces ARM Cortex-M4 MCU by highlighting the most important elements, including: registers, pipelines, memory, and I/O ports. With the updated MSP432P401R Evaluation Board (EVB), MSP-EXP432P401R, this MCU provides various control functions with multiple peripherals to enable users to develop and build various modern control projects with rich control strategies. Micro-controller programming is approached with basic and straightforward programming codes to reduce learning curves, and furthermore to enable students to build embedded applications in more efficient and interesting ways. For authentic examples, 37 Class programming projects are built into the book that use MSP432P401R MCU. Additionally, approximately 40 Lab programming projects with MSP432P401R MCU are included to be assigned as homework.
Focuses on the definition, engineering, and delivery of AI solutions as opposed to AI itself Reader will still gain a strong understanding of AI, but through the perspective of delivering real solutions Explores the core AI issues that impact the success of an overall solution including i. realities of dealing with data, ii. impact of AI accuracy on the ability of the solution to meet business objectives, iii. challenges in managing the quality of machine learning models Includes real world examples of enterprise scale solutions Provides a series of (optional) technical deep dives and thought experiments.
This book discusses control and optimization techniques in the broadest sense, covering new theoretical results and the applications of newly developed methods for PV systems. Going beyond classical control techniques, it promotes the use of more efficient control and optimization strategies based on linearized models and purely continuous (or discrete) models. These new strategies not only enhance the performance of the PV systems, but also decrease the cost per kilowatt-hour generated.
This book presents the proceedings of the International Science and Technology Conference "FarEastCon 2019," which took place on October 1-4, 2019, in Vladivostok, Russian Federation. The conference provided a platform for gathering expert opinions on projects and initiatives aimed at the implementation of far-sighted scientific research and development, and allowed current theoretical and practical advances to be shared with the broader research community. Featuring selected papers from the conference, this book will be of interest to experts in various fields whose work involves developing innovative solutions and increasing the efficiency of economic activities.
On the Convexification of Optimal Control Problems of Flight Dynamics.- Restricted Optimal Transportation Flows.- Relaxation Gaps in Optimal Control Processes with State Constraints.- Optimal Shape Design for Elliptic Hemivariational Inequalities in Nonlinear Elasticity.- A Discretization for Control Problems with optimality test.- Smooth and Nonsmooth Optimal Lipschitz Control - a Model Problem.- Suboptimality Theorems in Optimal Control.- A Second Order Sufficient Condition for Optimality in Nonlinear Control - the Conjugate Point Approach.- Extremal Problems for Elliptic Systems.- Existence Results for Some Nonconvex Optimization Problems Governed by Nonlinear Processes.- Multiobjective Optimal Control Problems.- Existence Principles and the Theory of Extremal Problems.- Hamilton-Jacobi-Bellman Equations and Optimal Control.- Output Target Control and Uncertain Infinite-Dimensional Systems.- Sensitivity Analysis of Stiff and Non-stiff Initial-value Problems.- Algorithm of Real-Time Minimization of Control Norm for Incompletely Determined Linear Control Systems.- Set-valued Calculus and Dynamic Programming in Problems of Feedback Control.- Strong Observability of Time-dependent Linear Systems.- Sensitivity Analysis and Real-Time Control of Nonlinear Optimal Control Systems via Nonlinear Programming Methods.- Accelerating Multiple Shooting for State-constrained Trajectory Optimization Problems.- SQP Methods and their Application to Numerical Optimal Control.- Predictor-Corrector Continuation Method for Optimal Control Problems.- Time Invariant Global Stabilization of a Mobile Robot.- Competitive Running on a Hilly Track.- Convex Domains of Given Diameter with Greatest Volume.- Isoperimetric and Isodiametric Area-minimal Plane Convex Figures.- Minimizing the Noise of an Aircraft during Landing Approach.- Real-Time Computation of Strategies of Differential Games with Applications to Collision Avoidance.- The Use of Screening for the Control of an Endemic Disease.- Optimal Control of Sloshing Liquids.- Free Surface Waves in a Wave Tank.- Efficient Convexification of Flight Path Optimization Problems.- Determining the Controllability Region for the Re-entry of an Apollo-type Spacecraft. |
You may like...
Crude Oil Fouling - Deposit…
Francesco Coletti, Geoffrey Hewitt
Hardcover
R2,864
Discovery Miles 28 640
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
|