![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Waste treatment & disposal > General
Microalgae in Waste Water Remediation aims to point out trends and current topics concerning the use of microalgae in wastewater treatment and to identify potential paths for future research regarding microalgaebased bioremediation. To achieve this goal, the book also assessing and analyzes the topics that attract attention among the scientific community and their evolution through time. This book will be useful to the students, scientists and policy makers concerned with the microalgae mediated management of wastewater effluents and its applications in overall future sustainable development.
Geotechnical engineering of landfills is a symposium designed to provide a forum for the presentation of recent developments in the design, construction and operation of landfills facilities. The papers presented in this volume bring together expertise and experience from industry, academia and the Environment Agency.
Provides a comprehensive review and evaluation of waste containment technologies presently practiced in remediation applications. Covers the state-of-knowledge, construction and performance of the three main barrier types - vertical (walls), bottom (floors) and surface (caps).
Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology is a complete resource covering the fundamentals and applications of all Advanced Oxidation Processes (AOPs). This book presents the most up-to-date research on AOPs and makes the argument that AOPs offer an eco-friendly method of wastewater treatment. In addition to an overview of the fundamentals and applications, it details the reactive species involved, along with sections on reactor designs, thus helping readers understand and implement these methods.
In this first volume, various materials such as chitosan, lignin-based biomaterials, cellulosic based bio materials, carbon materials, Polysaccharide-composites materials, Aromatic-Based Synthetic Macromolecules, Agricultural wastes, etc for treating textile waste water are highlighted. One of the major pollutants in the textile and fashion industry is (textile) waste water. Textile wastewater can lead to serious environmental issues if discharged without proper and sufficient treatment. The materials employed along with the technologies available to trate waste water are the key. There are a lot of advancements in terms materials, technologies employed for textile waste water treatment. Sustainable bio-nano materials and macro molecules play a major role in the efficient treatment of textile waster.
Current Developments in Biotechnology and Bioengineering: Waste Treatment Processes for Energy Generation provides extensive research on the role of waste management processes/technologies for energy generation. The enormous increase of waste materials generated by human activity and its potentially harmful effects on the environment and public health have led to an increasing awareness of an urgent need to adopt scientific methods for the safe disposal of wastes. This book outlines the basic knowledge, processes and technologies for the generation of energy from waste and functions as an important reference for academics and practitioners at varying levels of interest and knowledge. The book's content encompasses all issues for energy recovery from waste in a very clear and simple manner, acting as a comprehensive resource for anyone seeking an understanding on the topic.
This book addresses the need for a technical guided thought on production, consumption, and waste management of plastic and polymers in the African continent. Issues such as resource availability, processing technologies, plastic policies, and much more are covered in the book. While Africa is made up of several different countries which might be different from each other in many ways, these countries within the African continent have some commonalities such as region, some shared history, resources, and some shared policies through organizations such as the African Union, African Free trade Zone, and ECOWAS. With a population of over a billion, the African continent has become an attractive market for various businesses. Several publications in recent years have pushed for the advancement of the African continent toward increased manufacturing as a road to development. This inevitably includes the plastics and other polymers industry. Careful consideration must be taken to ensure that this growth will focus on more sustainable and greener manufacturing; otherwise, this anticipated growth in the plastics and polymer industry will only spell increased pollution and worsening of the environment.
Remediation of wastewater is important to ensure that pollutants generated in industry do not effect our environment negatively. Traditional wastewater remediation is not a sustainable process, however by using biological means the sustainability can be improved. This book explores how bioremediation biotechnology is used to remove pollutants in wastewater. Both conventional methods bioremediation technologies are discussed.
This book describes a simplified approach to the modelling and process design of a fixed bed hybrid bioreactor for wastewater treatment. In this work a simplified model for hybrid bioreactor is developed to determine output parameters like exiting substrate concentration in bulk liquid, average substrate flux in the biofilm, effective and total biofilm thickness. The model is based on mass balance of both carbonaceous substrate and biomass under suspended and attached growth simultaneously along with substrate mass transport into the biofilm. The proposed model has also been validated with the results obtained from experimental study with municipal wastewater considering as a low strength wastewater with no inhibition. There is a flexibility of the proposed model making it a versatile one to find out the exiting substrate concentration both in hybrid bioreactor as well as in a completely mixed biofilm reactor (CMBR). The book caters to academics and practitioners working in the field of advanced wastewater treatment.
A technical and economic review of emerging waste disposal technologies Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, "Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons" reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.
This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.
Electrochemical Methods for Water Treatment: Fundamentals, Methods and Full Scale Applications covers all traditional, emerging and combined methods currently available for the treatment of surface, drinkable water and industrial wastewater. Topics covered include an overview of pollutants and treatment methods, an extended introduction to electrochemical processes in water treatment, electrochemical oxidation (including electrodesinfection, electrochemical reduction, electrocoagulation, electroflotation, and electrodialysis. In addition, emerging and combined methods are presented, as is a discussion on the available equipment necessary to scale up the operation of all methods. Electrochemical technologies have many common issues in terms of design, operation and performance. This book brings together a wealth of information on all different methods in a single source to provide broad insights and enable the connection between challenges and opportunities for different methods. The combination of technical information, design and case studies offered helps researchers better understand the challenges associated with scale up and implementation.
Agro-industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass explores the current state-of-the-art bioprocesses in enzyme production using agro-industrial wastes with respect to their generation, current methods of disposal, the problems faced in terms of waste and regulation, and potential value-added protocols for these wastes. It surveys areas ripe for further inquiry as well as future trends in the field. Under each section, the individual chapters present up-to-date and in-depth information on bioprospecting of agro-industrial wastes to obtain enzymes of economic importance. This book covers research gaps, including valorization of fruit and vegetable by-product-a key contribution toward sustainability that makes the utmost use of agricultural produce while employing low-energy and cost-efficient bioprocesses. Written by experts in the field of enzyme technology, the book provides valuable information for academic researchers, graduate students, and industry scientists working in industrial-food microbiology, biotechnology, bioprocess technology, post-harvest technology, agriculture, waste management, and the food industry.
Sustainable Industrial Design and Waste Management was inspired by
the need to have a text that enveloped awareness and solutions to
the ongoing issues and concerns of waste generated
"Enzymes in Valorization of waste: Enzymatic pre-treatment of waste for development of enzyme based biorefinery" focusses on the role of key delignifying enzymes (Laccase, MnP, LiP and LPMO's) involved in biomass pre-treatment. The role of these enzymes such as hemicellulose, chitinases, and pectinases are discussed exhaustively including enzyme assisted recovery of high value phenolic compounds and value-added compounds generated during the pre-treatment process. All chapters cover broad topics and thematic areas associated with the pre-treatment step of biorefinery including enzyme mediated water treatment and its associated applications in biofuels, biorefineries and bioconversion. Features: Highlights mechanistic approach how the enzyme being able to regulate the delignification. Discusses advantages of the enzymatic delignification over other physical and chemical methods. Illustrates role of enzymes such as pectinase and chitinases and breaking down of biomass recalcitrance due to presence of pectin and chitin. Consolidates details on de-lignifying enzymes ((Laccase, MnP, LiP and LPMO's) suitable in biomass pretreatment. Explores role of delignifying enzymes in high value phenolic compounds recovery during the enzymatic delignification. This book aims at Graduate students, Researchers and related Industry Professionals in Biochemical Engineering, Environmental Science, Wastewater Treatment, Biotechnology, Applied Microbiology, Biomass Based Biorefinery, Biochemistry, Green Chemistry, Sustainable Development, Waste Treatment, Enzymology, Microbial Biotechnology, and Waste Valorization.
Key features: 1. Reviews recently developed approaches/strategies/ technologies to solve five major trends in the field of wastewater treatment, including nutrient removal and resource recovery, organometallic compounds detoxification, energy-saving and production, sustainability, and community involvement. 2. Useful for students, researchers, scientists a wide range of professionals responsible for regulating, monitoring, and designing industrial waste facilities. 3. Provides a comprehensive review of new trends and advances in microbial biotechnology through discussion of recent developments in this field of wastewater treatment, recycling, and reuse for sustainable development.
The exponential growth of urban settings has led to an increase in pollutants and waste management issues around the world. As the environment continues to falter under the weight of these pressing issues, it has become increasingly imperative to develop new technologies and methodologies that have the potential to improve the overall sustainability and cleanliness of these cities. Smart Cities as a Solution for Reducing Urban Waste and Pollution examines emergent research on smart innovations within built urban environments. Featuring best practices and theoretical frameworks, as well as potential issues in the implementation of smart and green technology in urban settings, this publication is a vital reference source for graduate students, researchers, academics, engineers, architects, facility managers, and government officials.
Food Waste Recovery: Processing Technologies and Industrial Techniques acts as a guide to recover valuable components of food by-products and recycle them inside the food chain, in an economic and sustainable way. The book investigates all the relevant recovery issues and compares different techniques to help you advance your research and develop new applications. Strong coverage of the different technologies is included, while keeping a balance between the characteristics of current conventional and emerging technologies. This is an essential reference for research outcomes.
The book focuses on the challenges faced by urban areas in the context of handling waste in an environmentally and socially acceptable manner. It also discusses effective waste management approaches, which differ according to culture, climate, and socio-economic variables, as well as institutional volume. Presenting selected, high-quality papers from IconSWM 2018, the book explores a number of waste management methods with the help of case studies.
Environmental Impact of Mining and Mineral Processing: Management, Monitoring, and Auditing Strategies covers all the aspects related to mining and the environment, including environmental assessment at the early planning stages, environmental management during mine operation, and the identification of major impacts. Technologies for the treatment of mining, mineral processing, and metallurgical wastes are also covered, along with environmental management of mining wastes, including disposal options and the treatment of mining effluents.
Provides information regarding bioelectrochemical systems mediated value-added chemical synthesis and waste remediation and resource recovery approaches Covers the use of microbial biofilm and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals Explains waste to energy related concepts to treat industrial effluents along with bioenergy generation Deals with various engineering approaches for chemicals production in eco-friendly manner Discusses emerging electro-fermentation technology
This book discusses the recent advances in the wastes recycling technologies to provide low-cost and alternative ways for nanomaterials production. It shows how carbon nanomaterials can be synthesized from different waste sources such as banana fibers, argan (Argania spinosa) seed shells, corn grains, camellia oleifera shell, sugar cane bagasse, oil palm (empty fruit bunches and leaves) and palm kernel shells. Several nanostructured metal oxides (MnO2, Co3O4,....) can be synthesized via recycling of spent batteries. The recovered nanomaterials can be applied in many applications including: Energy (supercapacitors, solar cells, etc.) water treatments (heavy metal ions and dyes removal) and other applications. Spent battery and agriculture waste are rich precursors for metals and carbon, respectively. The book also explores the various recycling techniques, agriculture waste recycling, batteries recycling, and different applications of the recycled materials.
Recycling is the need of the hour and it is an inevitable destination at the end of the life of any product. Today, recycling can happen at postindustrial and post-consumer states and the importance of recycled products in the market has gained significant importance. Recycled products dominate the array of sustainable products in today's context. Even though there are commercial implications for recycling, one of the very important and obvious reasons to go for recycling and to have recycled products is to have the benefits on environmental sustainability. It is highly important to assess the environmental footprints of recycled products and further improve the environmental benefits of such recycled products. This book presents five interesting chapters pertaining to the environmental footprints of various recycled products.
Water is essential to our planet's life, and protecting our water resources is a prerequisite for building a sustainable future. Since water use is inextricably linked to energy use, however, we face significant challenges. Water plays an essential role in many, if not most, manufacturing facilities. In a world facing a water-scarcity crisis, much research and development currently focuses on decreasing industries' water-use footprint. This compendium volume looks briefly at several select industries and investigates various water treatment processes for each, including microbial biotechnologies, ozone-related processes, adsorption, and photochemical reactions, among others. The various industries are organized into four groups: Industries that produce petrochemicals Metal industries The semi-conductor industry The paper and pulp industries Collected by a well-respected expert in the field, the studies gathered here are intended to be a starting point for further investigation by graduate students and other scientific researchers. Today's research, found in these chapters, can be expanded to create tomorrow's even wider frame of study. |
You may like...
Biodegradation Technology of Organic and…
Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa, …
Hardcover
R3,635
Discovery Miles 36 350
Resource Recovery in Municipal Waste…
Mika Sillanpaa, Ali Khadir, …
Paperback
R4,448
Discovery Miles 44 480
Sustainability and Management of Water…
Herbert Lotus
Hardcover
Cost Effective Technologies for Solid…
Srujana Kathi, Suja Devipriya, …
Paperback
R2,801
Discovery Miles 28 010
Waste Electrical and Electronic…
Francesco Veglio, Ionela Birloaga
Paperback
Clean Energy and Resource Recovery…
Vinay Kumar Tyagi, Manish Kumar, …
Paperback
R3,395
Discovery Miles 33 950
Water Resources Management for Rural…
Sughosh Madhav, Arun Lal Srivastav, …
Paperback
R2,941
Discovery Miles 29 410
Membranes for Industrial Wastewater…
S. Judd, Bruce Jefferson
Hardcover
R3,935
Discovery Miles 39 350
Resource Recovery in Industrial Waste…
Mika Sillanpaa, Ali Khadir, …
Paperback
R4,448
Discovery Miles 44 480
|